import gradio as gr import requests import os import faiss import numpy as np import json from sentence_transformers import SentenceTransformer # ✅ Load context data with open("texts.json", "r", encoding="utf-8") as f: texts = json.load(f) index = faiss.read_index("faiss_index.bin") embed_model = SentenceTransformer("all-MiniLM-L6-v2") API_KEY = os.environ.get("OPENROUTER_API_KEY") MODEL = "qwen/qwen-2.5-coder-32b-instruct:free" # ✅ RAG context retriever def get_context(query, top_k=5): query_vec = embed_model.encode([query]) D, I = index.search(np.array(query_vec), top_k) return "\n".join([texts[i] for i in I[0]]) # ✅ Chat handler def chat_fn(message, history): headers = { "Authorization": f"Bearer {API_KEY}", "Content-Type": "application/json" } context = get_context(message) messages = [ {"role": "system", "content": f"You are a helpful assistant. ONLY use the context below to answer:\n\n{context}"} ] for user, assistant in history: messages.append({"role": "user", "content": user}) messages.append({"role": "assistant", "content": assistant}) messages.append({"role": "user", "content": message}) payload = { "model": MODEL, "messages": messages } try: response = requests.post("https://openrouter.ai/api/v1/chat/completions", headers=headers, json=payload) response.raise_for_status() reply = response.json()["choices"][0]["message"]["content"] except Exception as e: reply = f"❌ Error: {e}" return reply # ✅ Launch chatbot without title or description gr.ChatInterface( fn=chat_fn, theme="soft" ).launch()