import gradio as gr import requests import json import os import faiss import numpy as np from sentence_transformers import SentenceTransformer # ✅ Load vector store and data index = faiss.read_index("faiss_index.bin") with open("texts.json", "r") as f: texts = json.load(f) # ✅ Load embedding model model = SentenceTransformer("all-MiniLM-L6-v2") # ✅ OpenRouter setup API_KEY = os.environ.get("OPENROUTER_API_KEY") MODEL = "deepseek/deepseek-chat-v3-0324:free" # ✅ Helper: Find top-k relevant context def get_relevant_context(query, k=5): query_vector = model.encode([query]) scores, indices = index.search(np.array(query_vector), k) return [texts[i] for i in indices[0] if i < len(texts)] # ✅ Chat logic def chat_with_data(message, history): greetings = ["hi", "hello", "hey", "salam", "assalamualaikum", "good morning", "good evening"] message_lower = message.lower().strip() if any(greet in message_lower for greet in greetings): return "👋 Hello! How can I assist you regarding LogiqCurve today?" context = get_relevant_context(message) if not context: return "❌ Sorry, I can only answer questions related to LogiqCurve and its services." context_text = "\n".join(context) prompt = f"You are a helpful assistant for LogiqCurve. Use only the following context:\n\n{context_text}\n\nUser: {message}" messages = [ {"role": "system", "content": "You are a helpful assistant that answers only using provided context."}, {"role": "user", "content": prompt} ] headers = { "Authorization": f"Bearer {API_KEY}", "Content-Type": "application/json" } payload = { "model": MODEL, "messages": messages } try: res = requests.post("https://openrouter.ai/api/v1/chat/completions", headers=headers, json=payload) res.raise_for_status() return res.json()["choices"][0]["message"]["content"] except Exception as e: return f"❌ Error: {e}" # ✅ Gradio UI gr.ChatInterface( fn=chat_with_data, title="MK Assistant", description="Ask questions related to LogiqCurve. Chat is limited to website-related content only.", theme="soft" ).launch()