Spaces:
Sleeping
Sleeping
import streamlit as st | |
import pandas as pd | |
import numpy as np | |
import json | |
import os | |
import plotly.express as px | |
from dotenv import load_dotenv | |
from groq import Groq | |
# Load environment variables | |
load_dotenv() | |
GROQ_API_KEY = os.getenv('GROQ_API_KEY') | |
def show_hydrogen_analyzer(): | |
st.title("π¬ Hydrogen Production Analyzer") | |
st.markdown("Analyze and optimize your hydrogen production process.") | |
# Sidebar inputs | |
st.sidebar.subheader("π§ Input Parameters") | |
water_source = st.sidebar.selectbox("Water Source", ["Tap Water", "Deionized", "Seawater"]) | |
production_method = st.sidebar.selectbox("Production Method", ["Alkaline", "PEM", "SOEC"]) | |
current_density = st.sidebar.slider("Current Density (A/cmΒ²)", 0.1, 2.0, 0.5) | |
voltage = st.sidebar.slider("Voltage (V)", 1.4, 5.0, 2.0) | |
energy_source = st.sidebar.selectbox("Energy Source", ["Grid", "Solar", "Wind"]) | |
# Analysis Button | |
if st.button("Analyze Hydrogen Production"): | |
# Mock calculation | |
production_rate = np.round(current_density * voltage * 10, 2) # Dummy formula | |
cost_per_kg = np.round(10 / production_rate, 2) if production_rate else 0 | |
# Display Results | |
st.metric("β‘ Production Rate", f"{production_rate} g/hour") | |
st.metric("π° Cost per kg Hβ", f"${cost_per_kg}") | |
# AI Optimization (Mock) | |
ai_recommendations = { | |
"Efficiency Boost": "Increase voltage to 2.5V", | |
"Cost Reduction": "Use renewable energy sources", | |
"Best Electrolyzer": "PEM recommended" | |
} | |
st.subheader("π€ AI Recommendations") | |
st.json(ai_recommendations) | |