New-test / hydrogen_analyzer.py
mjolnir1122's picture
Rename hydrogen_analyzer (1).py to hydrogen_analyzer.py
8c39c8e verified
import streamlit as st
import pandas as pd
import numpy as np
import json
import os
import plotly.express as px
from dotenv import load_dotenv
from groq import Groq
# Load environment variables
load_dotenv()
GROQ_API_KEY = os.getenv('GROQ_API_KEY')
def show_hydrogen_analyzer():
st.title("πŸ”¬ Hydrogen Production Analyzer")
st.markdown("Analyze and optimize your hydrogen production process.")
# Sidebar inputs
st.sidebar.subheader("πŸ”§ Input Parameters")
water_source = st.sidebar.selectbox("Water Source", ["Tap Water", "Deionized", "Seawater"])
production_method = st.sidebar.selectbox("Production Method", ["Alkaline", "PEM", "SOEC"])
current_density = st.sidebar.slider("Current Density (A/cmΒ²)", 0.1, 2.0, 0.5)
voltage = st.sidebar.slider("Voltage (V)", 1.4, 5.0, 2.0)
energy_source = st.sidebar.selectbox("Energy Source", ["Grid", "Solar", "Wind"])
# Analysis Button
if st.button("Analyze Hydrogen Production"):
# Mock calculation
production_rate = np.round(current_density * voltage * 10, 2) # Dummy formula
cost_per_kg = np.round(10 / production_rate, 2) if production_rate else 0
# Display Results
st.metric("⚑ Production Rate", f"{production_rate} g/hour")
st.metric("πŸ’° Cost per kg Hβ‚‚", f"${cost_per_kg}")
# AI Optimization (Mock)
ai_recommendations = {
"Efficiency Boost": "Increase voltage to 2.5V",
"Cost Reduction": "Use renewable energy sources",
"Best Electrolyzer": "PEM recommended"
}
st.subheader("πŸ€– AI Recommendations")
st.json(ai_recommendations)