Spaces:
Build error
Build error
File size: 22,518 Bytes
518aafe 95d9fdc d1da8fd 95d9fdc 145385b 518aafe 145385b 518aafe 145385b 518aafe 145385b 518aafe 145385b 518aafe 145385b 518aafe 145385b 518aafe 145385b 518aafe 145385b 518aafe 145385b 518aafe 4395ceb 518aafe d1da8fd 518aafe d1da8fd 518aafe d1da8fd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 |
import asyncio
import logging
import os
import time
from pprint import pprint
from threading import Thread
from typing import Any, Dict, List
# isort: off
from unsloth import (
FastLanguageModel,
FastModel,
FastVisionModel,
is_bfloat16_supported,
) # noqa: E402
from unsloth.chat_templates import get_chat_template # noqa: E402
# isort: on
import asyncio
import json
import threading
import uuid
from datetime import datetime
from typing import Dict, List, Optional
from datasets import (
Dataset,
DatasetDict,
IterableDataset,
IterableDatasetDict,
load_dataset,
)
from fastapi import FastAPI, HTTPException, Request
from openai.types.chat.chat_completion import ChatCompletion
from openai.types.chat.chat_completion import Choice as ChatCompletionChoice
from openai.types.chat.chat_completion_chunk import ChatCompletionChunk
from openai.types.chat.chat_completion_chunk import Choice as ChatCompletionChunkChoice
from openai.types.chat.chat_completion_chunk import ChoiceDelta
from openai.types.chat.chat_completion_message import ChatCompletionMessage
from openai.types.chat.completion_create_params import CompletionCreateParams
from openai.types.fine_tuning import FineTuningJob
from peft import PeftModel
from pydantic import TypeAdapter
from ray import serve
from smolagents import CodeAgent, LiteLLMModel, Model, TransformersModel, VLLMModel
from smolagents.monitoring import LogLevel
from sse_starlette import EventSourceResponse
from starlette.responses import JSONResponse
from transformers import (
AutoModelForCausalLM,
AutoTokenizer,
DataCollatorForLanguageModeling,
Trainer,
TrainingArguments,
)
from transformers.generation.streamers import AsyncTextIteratorStreamer
from transformers.image_utils import load_image
from trl import SFTTrainer
dtype = (
None # None for auto detection. Float16 for Tesla T4, V100, Bfloat16 for Ampere+
)
load_in_4bit = True # Use 4bit quantization to reduce memory usage. Can be False.
max_seq_length = 2048 # Supports RoPE Scaling interally, so choose any!
# max_seq_length = 4096 # Choose any! We auto support RoPE Scaling internally!
logger = logging.getLogger("ray.serve")
os.environ["PYTORCH_CUDA_ALLOC_CONF"] = "expandable_segments:True"
app = FastAPI()
# middlewares = [
# middleware
# for middleware in ConnexionMiddleware.default_middlewares
# if middleware is not SecurityMiddleware
# ]
# connexion_app = AsyncApp(import_name=__name__, middlewares=middlewares)
# connexion_app.add_api(
# # "api/openai/v1/openapi/openapi.yaml",
# "api/v1/openapi/openapi.yaml",
# # base_path="/openai/v1",
# base_path="/v1",
# pythonic_params=True,
# resolver_error=501,
# )
# # fastapi_app.mount("/api", ConnexionMiddleware(app=connexion_app, import_name=__name__))
# # app.mount("/api", ConnexionMiddleware(app=connexion_app, import_name=__name__))
# app.mount(
# "/",
# ConnexionMiddleware(
# app=connexion_app,
# import_name=__name__,
# # middlewares=middlewares,
# ),
# )
@serve.deployment(
autoscaling_config={
# https://docs.ray.io/en/latest/serve/advanced-guides/advanced-autoscaling.html#required-define-upper-and-lower-autoscaling-limits
"max_replicas": 1,
"min_replicas": 1, # TOOD: set to 0
"target_ongoing_requests": 2, # https://docs.ray.io/en/latest/serve/advanced-guides/advanced-autoscaling.html#target-ongoing-requests-default-2
},
max_ongoing_requests=5, # https://docs.ray.io/en/latest/serve/advanced-guides/advanced-autoscaling.html#max-ongoing-requests-default-5
ray_actor_options={"num_gpus": 1},
)
@serve.ingress(app)
class ModelDeployment:
def __init__(
self,
model_name: str,
):
self.model_name = model_name
self.fine_tuning_jobs: Dict[str, FineTuningJob] = {}
self.training_threads: Dict[str, threading.Thread] = {}
# Load base model and processor
self.model, self.processor = FastModel.from_pretrained(
load_in_4bit=load_in_4bit,
max_seq_length=max_seq_length,
model_name=self.model_name,
)
# Configure LoRA for fine-tuning
self.model = FastModel.get_peft_model(
self.model,
r=16, # LoRA rank
target_modules=["q_proj", "k_proj", "v_proj", "o_proj"],
lora_alpha=32,
lora_dropout=0.05,
bias="none",
use_gradient_checkpointing=True,
random_state=42,
use_rslora=False,
)
FastModel.for_inference(self.model) # Enable native 2x faster inference
def reconfigure(self, config: Dict[str, Any]):
print("=== reconfigure ===")
print("config:")
print(config)
# https://docs.ray.io/en/latest/serve/production-guide/config.html#dynamically-change-parameters-without-restarting-replicas-user-config
def _run_training(self, job_id: str, training_file: str, model_name: str):
"""Run the training process in a separate thread."""
try:
# Update job status to queued
self.fine_tuning_jobs[job_id].status = "queued"
# Simulate file validation
time.sleep(2)
# Update job status to running
self.fine_tuning_jobs[job_id].status = "running"
self.fine_tuning_jobs[job_id].started_at = int(datetime.now().timestamp())
# Load and prepare dataset
dataset = load_dataset("json", data_files=training_file)
# Configure chat template
tokenizer = get_chat_template(
self.processor,
chat_template="chatml",
mapping={
"role": "from",
"content": "value",
"user": "human",
"assistant": "gpt",
},
map_eos_token=True,
)
# Format dataset
def formatting_prompts_func(examples):
convos = examples["conversations"]
texts = [
tokenizer.apply_chat_template(
convo, tokenize=False, add_generation_prompt=False
)
for convo in convos
]
return {"text": texts}
dataset = dataset.map(formatting_prompts_func, batched=True)
# Configure training arguments
training_args = TrainingArguments(
output_dir=f"models/{job_id}",
num_train_epochs=3,
per_device_train_batch_size=4,
gradient_accumulation_steps=4,
learning_rate=2e-4,
fp16=True,
logging_steps=10,
save_strategy="epoch",
optim="adamw_torch",
warmup_ratio=0.1,
lr_scheduler_type="cosine",
weight_decay=0.01,
)
# Create data collator
data_collator = DataCollatorForLanguageModeling(
tokenizer=tokenizer,
mlm=False,
)
# Create trainer
trainer = SFTTrainer(
model=self.model,
tokenizer=tokenizer,
train_dataset=dataset["train"],
args=training_args,
data_collator=data_collator,
max_seq_length=max_seq_length,
packing=False,
)
# Train
trainer.train()
# Save model and adapter
output_dir = f"models/{job_id}"
os.makedirs(output_dir, exist_ok=True)
# Save the base model config and tokenizer
self.model.config.save_pretrained(output_dir)
tokenizer.save_pretrained(output_dir)
# Save the adapter weights
self.model.save_pretrained(output_dir)
# Save the merged model in 16-bit format
try:
# First try to merge and save in 16-bit
self.model.save_pretrained_merged(
output_dir,
tokenizer,
save_method="merged_16bit",
)
except Exception as merge_error:
print(f"Failed to merge weights: {str(merge_error)}")
# If merging fails, just save the adapter weights
self.model.save_pretrained(output_dir)
# Update job status to succeeded
self.fine_tuning_jobs[job_id].status = "succeeded"
self.fine_tuning_jobs[job_id].finished_at = int(datetime.now().timestamp())
self.fine_tuning_jobs[job_id].trained_tokens = (
trainer.state.global_step * training_args.per_device_train_batch_size
)
# Add result files
result_files = [
f"{output_dir}/config.json",
f"{output_dir}/tokenizer.json",
f"{output_dir}/adapter_config.json",
f"{output_dir}/adapter_model.bin",
]
# Add merged model files if they exist
if os.path.exists(f"{output_dir}/pytorch_model.bin"):
result_files.append(f"{output_dir}/pytorch_model.bin")
self.fine_tuning_jobs[job_id].result_files = result_files
except Exception as e:
# Update job status to failed
self.fine_tuning_jobs[job_id].status = "failed"
self.fine_tuning_jobs[job_id].finished_at = int(datetime.now().timestamp())
self.fine_tuning_jobs[job_id].error = str(e)
print(f"Training failed: {str(e)}")
import traceback
print(traceback.format_exc())
@app.post("/v1/fine_tuning/jobs")
async def create_fine_tuning_job(self, body: dict):
"""Create a fine-tuning job."""
try:
# Validate required fields
if "training_file" not in body:
raise HTTPException(status_code=400, detail="training_file is required")
if "model" not in body:
raise HTTPException(status_code=400, detail="model is required")
# Generate job ID
job_id = f"ftjob-{uuid.uuid4().hex[:8]}"
# Create job object
job = FineTuningJob(
id=job_id,
object="fine_tuning.job",
created_at=int(datetime.now().timestamp()),
finished_at=None,
model=body["model"],
fine_tuned_model=None,
organization_id="org-123",
status="validating_files", # Start with validating_files
hyperparameters=body.get("hyperparameters", {}),
training_file=body["training_file"],
trained_tokens=None,
error=None,
result_files=[], # Required field
seed=42, # Required field
)
# Store job
self.fine_tuning_jobs[job_id] = job
# Start training in background thread
thread = threading.Thread(
target=self._run_training,
args=(job_id, body["training_file"], body["model"]),
)
thread.start()
self.training_threads[job_id] = thread
return job.model_dump()
except Exception as e:
raise HTTPException(status_code=500, detail=str(e))
@app.get("/v1/fine_tuning/jobs")
async def list_fine_tuning_jobs(self):
"""List all fine-tuning jobs."""
return {
"object": "list",
"data": [job.model_dump() for job in self.fine_tuning_jobs.values()],
}
@app.get("/v1/fine_tuning/jobs/{job_id}")
async def get_fine_tuning_job(self, job_id: str):
"""Get a specific fine-tuning job."""
if job_id not in self.fine_tuning_jobs:
raise HTTPException(status_code=404, detail="Job not found")
return self.fine_tuning_jobs[job_id].model_dump()
@app.post("/v1/fine_tuning/jobs/{job_id}/cancel")
async def cancel_fine_tuning_job(self, job_id: str):
"""Cancel a fine-tuning job."""
if job_id not in self.fine_tuning_jobs:
raise HTTPException(status_code=404, detail="Job not found")
job = self.fine_tuning_jobs[job_id]
if job.status not in ["created", "running"]:
raise HTTPException(status_code=400, detail="Job cannot be cancelled")
job.status = "cancelled"
job.finished_at = int(datetime.now().timestamp())
return job.model_dump()
@app.post("/v1/chat/completions")
async def create_chat_completion(self, body: dict, raw_request: Request):
"""Creates a model response for the given chat conversation. Learn more in the [text generation](/docs/guides/text-generation), [vision](/docs/guides/vision), and [audio](/docs/guides/audio) guides. Parameter support can differ depending on the model used to generate the response, particularly for newer reasoning models. Parameters that are only supported for reasoning models are noted below. For the current state of unsupported parameters in reasoning models, [refer to the reasoning guide](/docs/guides/reasoning).
# noqa: E501
:param create_chat_completion_request:
:type create_chat_completion_request: dict | bytes
:rtype: Union[CreateChatCompletionResponse, Tuple[CreateChatCompletionResponse, int], Tuple[CreateChatCompletionResponse, int, Dict[str, str]]
"""
print("=== create_chat_completion ===")
print("body:")
pprint(body)
ta = TypeAdapter(CompletionCreateParams)
print("ta.validate_python...")
pprint(ta.validate_python(body))
max_new_tokens = body.get("max_completion_tokens", body.get("max_tokens"))
messages = body.get("messages")
model_name = body.get("model")
stream = body.get("stream", False)
temperature = body.get("temperature")
tools = body.get("tools")
images = []
for message in messages:
for content in message["content"]:
if "type" in content and content["type"] == "image_url":
image_url = content["image_url"]["url"]
image = load_image(image_url)
images.append(image)
content["type"] = "image"
del content["image_url"]
elif isinstance(content, dict) and "text" in content:
# Convert content to string if it's a dict with text
message["content"] = content["text"]
elif isinstance(content, list):
# Join list items with newlines if content is a list
message["content"] = "\n".join(content)
images = images if images else None
if model_name != self.model_name:
# adapter_path = model_name
# self.model.load_adapter(adapter_path)
return JSONResponse(content={"error": "Model not found"}, status_code=404)
prompt = self.processor.apply_chat_template(
add_generation_prompt=True,
conversation=messages,
# documents=documents,
tools=tools,
tokenize=False, # Return string instead of token IDs
)
print("prompt:")
print(prompt)
if images:
inputs = self.processor(text=prompt, images=images, return_tensors="pt")
else:
inputs = self.processor(text=prompt, return_tensors="pt")
inputs = inputs.to(self.model.device)
input_ids = inputs.input_ids
class GeneratorThread(Thread):
"""Thread to generate completions in the background."""
def __init__(self, model, **generation_kwargs):
super().__init__()
self.chat_completion = None
self.generation_kwargs = generation_kwargs
self.model = model
def run(self):
import torch
import torch._dynamo.config
try:
try:
self.generated_ids = self.model.generate(
**self.generation_kwargs
)
except torch._dynamo.exc.BackendCompilerFailed as e:
print(e)
print("Disabling dynamo...")
torch._dynamo.config.disable = True
self.generated_ids = self.model.generate(
**self.generation_kwargs
)
except Exception as e:
print(e)
print("Warning: Exception in GeneratorThread")
self.generated_ids = []
def join(self, timeout=None):
super().join()
return self.generated_ids
decode_kwargs = dict(skip_special_tokens=True)
streamer = (
AsyncTextIteratorStreamer(
self.processor,
skip_prompt=True,
**decode_kwargs,
)
if stream
else None
)
generation_kwargs = dict(
**inputs,
max_new_tokens=max_new_tokens,
streamer=streamer,
temperature=temperature,
use_cache=True,
)
thread = GeneratorThread(self.model, **generation_kwargs)
thread.start()
if stream:
async def event_publisher():
i = 0
try:
async for new_text in streamer:
print("new_text:")
print(new_text)
choices: List[ChatCompletionChunkChoice] = [
ChatCompletionChunkChoice(
_request_id=None,
delta=ChoiceDelta(
_request_id=None,
content=new_text,
function_call=None,
refusal=None,
role="assistant",
tool_calls=None,
),
finish_reason=None,
index=0,
logprobs=None,
)
]
chat_completion_chunk = ChatCompletionChunk(
_request_id=None,
choices=choices,
created=int(time.time()),
id=str(i),
model=model_name,
object="chat.completion.chunk",
service_tier=None,
system_fingerprint=None,
usage=None,
)
yield chat_completion_chunk.model_dump_json()
i += 1
except asyncio.CancelledError as e:
print("Disconnected from client (via refresh/close)")
raise e
except Exception as e:
print(f"Exception: {e}")
raise e
return EventSourceResponse(event_publisher())
generated_ids = thread.join()
input_length = input_ids.shape[1]
batch_decoded_outputs = self.processor.batch_decode(
generated_ids[:, input_length:],
skip_special_tokens=True,
)
choices: List[ChatCompletionChoice] = []
for i, response in enumerate(batch_decoded_outputs):
print("response:")
print(response)
# try:
# response = json.loads(response)
# finish_reason: str = response.get("finish_reason")
# tool_calls_json = response.get("tool_calls")
# tool_calls: List[ToolCall] = []
# for tool_call_json in tool_calls_json:
# tool_call = ToolCall(
# function=FunctionToolCallArguments(
# arguments=tool_call_json.get("arguments"),
# name=tool_call_json.get("name"),
# ),
# id=tool_call_json.get("id"),
# type="function",
# )
# tool_calls.append(tool_call)
# message: ChatMessage = ChatMessage(
# role="assistant",
# tool_calls=tool_calls,
# )
# except json.JSONDecodeError:
# finish_reason: str = "stop"
# message: ChatMessage = ChatMessage(
# role="assistant",
# content=response,
# )
message = ChatCompletionMessage(
audio=None,
content=response,
refusal=None,
role="assistant",
tool_calls=None,
)
choices.append(
ChatCompletionChoice(
index=i,
finish_reason="stop",
logprobs=None,
message=message,
)
)
chat_completion = ChatCompletion(
choices=choices,
created=int(time.time()),
id="1",
model=model_name,
object="chat.completion",
service_tier=None,
system_fingerprint=None,
usage=None,
)
return chat_completion.model_dump(mode="json")
def build_app(cli_args: Dict[str, str]) -> serve.Application:
"""Builds the Serve app based on CLI arguments."""
return ModelDeployment.options().bind(
cli_args.get("model_name"),
)
# uv run serve run serve:build_app model_name="HuggingFaceTB/SmolVLM-Instruct"
# uv run serve run serve:build_app model_name="unsloth/SmolLM2-135M-Instruct-bnb-4bit"
|