Spaces:
Build error
Build error
File size: 14,464 Bytes
7749830 70eb9de 9a87cb8 70eb9de 7749830 5bfd071 04d059b 4395ceb 04d059b 95d9fdc 7749830 95d9fdc 4395ceb 95d9fdc aae861a 95d9fdc aae861a 7749830 95d9fdc 518aafe 7749830 70eb9de 9a87cb8 70eb9de 9a87cb8 70eb9de 9a87cb8 70eb9de 9a87cb8 70eb9de 9a87cb8 70eb9de 9a87cb8 70eb9de 9a87cb8 70eb9de 7749830 611c848 7749830 70eb9de 4395ceb 611c848 70eb9de 7749830 70eb9de 4395ceb 70eb9de 611c848 70eb9de 7749830 70eb9de 7749830 611c848 7749830 70eb9de 7749830 70eb9de 518aafe 9a87cb8 7749830 70eb9de 7749830 70eb9de 9a87cb8 70eb9de 7749830 611c848 7749830 70eb9de 611c848 518aafe 611c848 b21080c 518aafe b21080c 70eb9de aa6b654 611c848 b21080c 70eb9de 7749830 5bfd071 7749830 70eb9de 5bfd071 9a87cb8 70eb9de 4395ceb 9a87cb8 4395ceb 9a87cb8 4395ceb 9a87cb8 4395ceb 9a87cb8 5bfd071 611c848 95d9fdc 518aafe 95d9fdc 518aafe 5bfd071 518aafe 5bfd071 9a87cb8 518aafe 95d9fdc 518aafe 95d9fdc 518aafe 4395ceb 518aafe 95d9fdc 518aafe 95d9fdc 518aafe 95d9fdc 518aafe 95d9fdc 518aafe 95d9fdc 518aafe 95d9fdc 518aafe 70eb9de 7749830 d1da8fd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 |
#!/usr/bin/env python3
"""
Fine-tuning script for SmolLM2-135M model using Unsloth.
This script demonstrates how to:
1. Install and configure Unsloth
2. Prepare and format training data
3. Configure and run the training process
4. Save and evaluate the model
To run this script:
1. Install dependencies: pip install -r requirements.txt
2. Run: python train.py
"""
import logging
import os
from datetime import datetime
from pathlib import Path
from typing import Union
import hydra
from omegaconf import DictConfig, OmegaConf
# isort: off
from unsloth import FastLanguageModel, FastModel, is_bfloat16_supported # noqa: E402
from unsloth.chat_templates import get_chat_template # noqa: E402
# isort: on
import os
import torch
from datasets import (
Dataset,
DatasetDict,
IterableDataset,
IterableDatasetDict,
load_dataset,
)
from peft import PeftModel
from smolagents import CodeAgent, LiteLLMModel, Model, TransformersModel, VLLMModel
from smolagents.monitoring import LogLevel
from transformers import (
AutoModelForCausalLM,
AutoTokenizer,
DataCollatorForLanguageModeling,
Trainer,
TrainingArguments,
)
from trl import SFTTrainer
from tools.smart_search.tool import SmartSearchTool
# Setup logging
def setup_logging():
"""Configure logging for the training process."""
# Create logs directory if it doesn't exist
log_dir = Path("logs")
log_dir.mkdir(exist_ok=True)
# Create a unique log file name with timestamp
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
log_file = log_dir / f"training_{timestamp}.log"
# Configure logging
logging.basicConfig(
level=logging.INFO,
format="%(asctime)s - %(name)s - %(levelname)s - %(message)s",
handlers=[logging.FileHandler(log_file), logging.StreamHandler()],
)
logger = logging.getLogger(__name__)
logger.info(f"Logging initialized. Log file: {log_file}")
return logger
logger = setup_logging()
def install_dependencies():
"""Install required dependencies."""
logger.info("Installing dependencies...")
try:
os.system(
'pip install "unsloth[colab-new] @ git+https://github.com/unslothai/unsloth.git"'
)
os.system("pip install --no-deps xformers trl peft accelerate bitsandbytes")
logger.info("Dependencies installed successfully")
except Exception as e:
logger.error(f"Error installing dependencies: {e}")
raise
def load_model(cfg: DictConfig) -> tuple[FastLanguageModel, AutoTokenizer]:
"""Load and configure the model."""
logger.info("Loading model and tokenizer...")
try:
model, tokenizer = FastModel.from_pretrained(
model_name=cfg.model.name,
max_seq_length=cfg.model.max_seq_length,
dtype=cfg.model.dtype,
load_in_4bit=cfg.model.load_in_4bit,
)
logger.info("Base model loaded successfully")
# Configure LoRA
model = FastModel.get_peft_model(
model,
r=cfg.peft.r,
target_modules=cfg.peft.target_modules,
lora_alpha=cfg.peft.lora_alpha,
lora_dropout=cfg.peft.lora_dropout,
bias=cfg.peft.bias,
use_gradient_checkpointing=cfg.peft.use_gradient_checkpointing,
random_state=cfg.peft.random_state,
use_rslora=cfg.peft.use_rslora,
loftq_config=cfg.peft.loftq_config,
)
logger.info("LoRA configuration applied successfully")
return model, tokenizer
except Exception as e:
logger.error(f"Error loading model: {e}")
raise
def load_and_format_dataset(
tokenizer: AutoTokenizer,
cfg: DictConfig,
) -> tuple[
Union[DatasetDict, Dataset, IterableDatasetDict, IterableDataset], AutoTokenizer
]:
"""Load and format the training dataset."""
logger.info("Loading and formatting dataset...")
try:
# Load the code-act dataset
dataset = load_dataset("xingyaoww/code-act", split="codeact")
logger.info(f"Dataset loaded successfully. Size: {len(dataset)} examples")
# Split into train and validation sets
dataset = dataset.train_test_split(
test_size=cfg.dataset.validation_split, seed=cfg.dataset.seed
)
logger.info(
f"Dataset split into train ({len(dataset['train'])} examples) and validation ({len(dataset['test'])} examples) sets"
)
# Configure chat template
tokenizer = get_chat_template(
tokenizer,
chat_template="chatml", # Supports zephyr, chatml, mistral, llama, alpaca, vicuna, vicuna_old, unsloth
mapping={
"role": "from",
"content": "value",
"user": "human",
"assistant": "gpt",
}, # ShareGPT style
map_eos_token=True, # Maps <|im_end|> to </s> instead
)
logger.info("Chat template configured successfully")
def formatting_prompts_func(examples):
convos = examples["conversations"]
texts = [
tokenizer.apply_chat_template(
convo, tokenize=False, add_generation_prompt=False
)
for convo in convos
]
return {"text": texts}
# Apply formatting to both train and validation sets
dataset = DatasetDict(
{
"train": dataset["train"].map(formatting_prompts_func, batched=True),
"validation": dataset["test"].map(
formatting_prompts_func, batched=True
),
}
)
logger.info("Dataset formatting completed successfully")
return dataset, tokenizer
except Exception as e:
logger.error(f"Error loading/formatting dataset: {e}")
raise
def create_trainer(
model: FastLanguageModel,
tokenizer: AutoTokenizer,
dataset: Union[DatasetDict, Dataset, IterableDatasetDict, IterableDataset],
cfg: DictConfig,
) -> Trainer:
"""Create and configure the SFTTrainer."""
logger.info("Creating trainer...")
try:
# Create TrainingArguments from config
training_args_dict = OmegaConf.to_container(cfg.training.args, resolve=True)
# Add dynamic precision settings
training_args_dict.update(
{
"fp16": not is_bfloat16_supported(),
"bf16": is_bfloat16_supported(),
}
)
training_args = TrainingArguments(**training_args_dict)
# Create data collator from config
data_collator = DataCollatorForLanguageModeling(
tokenizer=tokenizer,
**cfg.training.sft.data_collator,
)
# Create SFT config without data_collator to avoid duplication
sft_config = OmegaConf.to_container(cfg.training.sft, resolve=True)
sft_config.pop("data_collator", None) # Remove data_collator from config
trainer = SFTTrainer(
model=model,
tokenizer=tokenizer,
train_dataset=dataset["train"],
eval_dataset=dataset["validation"],
args=training_args,
data_collator=data_collator,
**sft_config,
)
logger.info("Trainer created successfully")
return trainer
except Exception as e:
logger.error(f"Error creating trainer: {e}")
raise
@hydra.main(version_base=None, config_path="conf", config_name="config")
def main(cfg: DictConfig) -> None:
"""Main training function."""
try:
logger.info("Starting training process...")
logger.info(f"Configuration:\n{OmegaConf.to_yaml(cfg)}")
# Install dependencies
# install_dependencies()
# Train if requested
if cfg.train:
# Load model and tokenizer
model, tokenizer = load_model(cfg)
# Load and prepare dataset
dataset, tokenizer = load_and_format_dataset(tokenizer, cfg)
# Create trainer
trainer: Trainer = create_trainer(model, tokenizer, dataset, cfg)
logger.info("Starting training...")
trainer.train()
# Save model
logger.info(f"Saving final model to {cfg.output.dir}...")
trainer.save_model(cfg.output.dir)
# Save model in VLLM format
logger.info("Saving model in VLLM format...")
model.save_pretrained_merged(
cfg.output.dir, tokenizer, save_method="merged_16bit"
)
# Print final metrics
final_metrics = trainer.state.log_history[-1]
logger.info("\nTraining completed!")
logger.info(f"Final training loss: {final_metrics.get('loss', 'N/A')}")
logger.info(
f"Final validation loss: {final_metrics.get('eval_loss', 'N/A')}"
)
else:
logger.info("Training skipped as train=False")
# Test if requested
if cfg.test:
logger.info("\nStarting testing...")
try:
# Enable memory history tracking
torch.cuda.memory._record_memory_history()
# Set memory allocation configuration
os.environ["PYTORCH_CUDA_ALLOC_CONF"] = (
"expandable_segments:True,max_split_size_mb:128"
)
# Load test dataset
test_dataset = load_dataset(
cfg.test_dataset.name,
cfg.test_dataset.config,
split=cfg.test_dataset.split,
trust_remote_code=True,
)
logger.info(f"Loaded test dataset with {len(test_dataset)} examples")
logger.info(f"Dataset features: {test_dataset.features}")
# Clear CUDA cache before loading model
torch.cuda.empty_cache()
# Initialize model
model: Model = LiteLLMModel(
api_base="http://localhost:8000/v1",
api_key="not-needed",
model_id=f"{cfg.model.provider}/{cfg.model.name}",
# model_id=cfg.model.name,
# model_id=cfg.output.dir,
)
# model: Model = TransformersModel(
# model_id=cfg.model.name,
# # model_id=cfg.output.dir,
# )
# model: Model = VLLMModel(
# model_id=cfg.model.name,
# # model_id=cfg.output.dir,
# )
# Create CodeAgent with SmartSearchTool
agent = CodeAgent(
model=model,
tools=[SmartSearchTool()],
verbosity_level=LogLevel.ERROR,
)
# Format task to get succinct answer
def format_task(question):
return f"""Please provide two answers to the following question:
1. A succinct answer that follows these rules:
- Contains ONLY the answer, nothing else
- Does not repeat the question
- Does not include explanations, reasoning, or context
- Does not include source attribution or references
- Does not use phrases like "The answer is" or "I found that"
- Does not include formatting, bullet points, or line breaks
- If the answer is a number, return only the number
- If the answer requires multiple items, separate them with commas
- If the answer requires ordering, maintain the specified order
- Uses the most direct and succinct form possible
2. A verbose answer that includes:
- The complete answer with all relevant details
- Explanations and reasoning
- Context and background information
- Source attribution where appropriate
Question: {question}
Please format your response as a JSON object with two keys:
- "succinct_answer": The concise answer following the rules above
- "verbose_answer": The detailed explanation with context"""
# Run inference on test samples
logger.info("Running inference on test samples...")
for i, example in enumerate(test_dataset):
try:
# Clear CUDA cache before each sample
torch.cuda.empty_cache()
# Format the task
task = format_task(example["Question"])
# Run the agent
result = agent.run(
task=task,
max_steps=3,
reset=True,
stream=False,
)
# Parse the result
import json
json_str = result[result.find("{") : result.rfind("}") + 1]
parsed_result = json.loads(json_str)
answer = parsed_result["succinct_answer"]
logger.info(f"\nTest Sample {i+1}:")
logger.info(f"Question: {example['Question']}")
logger.info(f"Model Response: {answer}")
logger.info("-" * 80)
# Log memory usage after each sample
logger.info(f"Memory usage after sample {i+1}:")
logger.info(
f"Allocated: {torch.cuda.memory_allocated() / 1024**2:.2f} MB"
)
logger.info(
f"Reserved: {torch.cuda.memory_reserved() / 1024**2:.2f} MB"
)
except Exception as e:
logger.error(f"Error processing test sample {i+1}: {str(e)}")
continue
# Dump memory snapshot for analysis
torch.cuda.memory._dump_snapshot("memory_snapshot.pickle")
logger.info("Memory snapshot saved to memory_snapshot.pickle")
except Exception as e:
logger.error(f"Error during testing: {e}")
raise
except Exception as e:
logger.error(f"Error in main training process: {e}")
raise
if __name__ == "__main__":
main()
# uv run python train.py
|