Spaces:
Build error
Build error
import logging | |
import os | |
import requests | |
import yaml | |
from dotenv import find_dotenv, load_dotenv | |
from litellm._logging import _disable_debugging | |
from openinference.instrumentation.smolagents import SmolagentsInstrumentor | |
from phoenix.otel import register | |
# from smolagents import CodeAgent, LiteLLMModel, LiteLLMRouterModel | |
from smolagents import CodeAgent, LiteLLMModel | |
from smolagents.monitoring import LogLevel | |
from model_factory import ModelFactory | |
from tools.smart_search.tool import SmartSearchTool | |
_disable_debugging() | |
# Configure OpenTelemetry with Phoenix | |
register() | |
SmolagentsInstrumentor().instrument() | |
logging.basicConfig( | |
level=logging.INFO, format="%(asctime)s - %(name)s - %(levelname)s - %(message)s" | |
) | |
logger = logging.getLogger(__name__) | |
# load_dotenv(find_dotenv()) | |
# API_BASE = os.getenv("API_BASE") | |
# API_KEY = os.getenv("API_KEY") | |
# MODEL_ID = os.getenv("MODEL_ID") | |
# Create model using the factory | |
model = ModelFactory.create_model() | |
# data_agent = create_data_agent(model) | |
# media_agent = create_media_agent(model) | |
# web_agent = create_web_agent(model) | |
# search_agent = ToolCallingAgent( | |
# tools=[DuckDuckGoSearchTool(), VisitWebpageTool()], | |
# model=model, | |
# name="search_agent", | |
# description="This is an agent that can do web search.", | |
# ) | |
prompt_templates = yaml.safe_load(open("prompts/code_agent_modified.yaml", "r")) | |
agent = CodeAgent( | |
# add_base_tools=True, | |
# additional_authorized_imports=[ | |
# "json", | |
# "pandas", | |
# "numpy", | |
# "re", | |
# # "requests" | |
# # "urllib.request", | |
# ], | |
# max_steps=10, | |
# managed_agents=[web_agent, data_agent, media_agent], | |
# managed_agents=[search_agent], | |
model=model, | |
prompt_templates=prompt_templates, | |
tools=[ | |
SmartSearchTool(), | |
# VisitWebpageTool(max_output_length=1024), | |
], | |
step_callbacks=None, | |
verbosity_level=LogLevel.ERROR, | |
) | |
agent.visualize() | |
def main(task: str): | |
# Format the task to request both succinct and verbose answers | |
formatted_task = f"""Please provide two answers to the following question: | |
1. A succinct answer that follows these rules: | |
- Contains ONLY the answer, nothing else | |
- Does not repeat the question | |
- Does not include explanations, reasoning, or context | |
- Does not include source attribution or references | |
- Does not use phrases like "The answer is" or "I found that" | |
- Does not include formatting, bullet points, or line breaks | |
- If the answer is a number, return only the number | |
- If the answer requires multiple items, separate them with commas | |
- If the answer requires ordering, maintain the specified order | |
- Uses the most direct and succinct form possible | |
2. A verbose answer that includes: | |
- The complete answer with all relevant details | |
- Explanations and reasoning | |
- Context and background information | |
- Source attribution where appropriate | |
Question: {task} | |
Please format your response as a JSON object with two keys: | |
- "succinct_answer": The concise answer following the rules above | |
- "verbose_answer": The detailed explanation with context""" | |
result = agent.run( | |
additional_args=None, | |
images=None, | |
max_steps=3, | |
reset=True, | |
stream=False, | |
task=formatted_task, | |
) | |
# Parse the result into a dictionary | |
try: | |
import json | |
# Find the JSON object in the response | |
json_str = result[result.find("{") : result.rfind("}") + 1] | |
parsed_result = json.loads(json_str) | |
except (ValueError, AttributeError) as e: | |
logger.error(f"Error parsing result: {e}") | |
# If parsing fails, return the raw result | |
return result | |
logger.info(f"Result: {parsed_result}") | |
return parsed_result["succinct_answer"] | |
if __name__ == "__main__": | |
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space" | |
api_url = DEFAULT_API_URL | |
questions_url = f"{api_url}/questions" | |
submit_url = f"{api_url}/submit" | |
response = requests.get(questions_url, timeout=15) | |
response.raise_for_status() | |
questions_data = response.json() | |
for question_data in questions_data[:1]: | |
file_name = question_data["file_name"] | |
level = question_data["Level"] | |
question = question_data["question"] | |
task_id = question_data["task_id"] | |
logger.info(f"Question: {question}") | |
# logger.info(f"Level: {level}") | |
if file_name: | |
logger.info(f"File Name: {file_name}") | |
# logger.info(f"Task ID: {task_id}") | |
final_answer = main(question) | |
logger.info(f"Final Answer: {final_answer}") | |
logger.info("--------------------------------") | |