Spaces:
Running
Running
Jae-Won Chung
commited on
Commit
·
4e4fca8
1
Parent(s):
2eb5843
Detail and no-detail mode
Browse files- app.py +328 -145
- data/diffusion/image-to-video/models.json +6 -6
- data/diffusion/text-to-image/models.json +16 -16
- data/diffusion/text-to-video/models.json +4 -4
- data/llm_text_generation/chat/models.json +14 -14
- data/llm_text_generation/code/models.json +9 -9
- data/mllm_text_generation/chat/models.json +6 -6
app.py
CHANGED
|
@@ -6,7 +6,6 @@ where UI elements are actually defined.
|
|
| 6 |
|
| 7 |
from __future__ import annotations
|
| 8 |
|
| 9 |
-
from abc import abstractmethod
|
| 10 |
import copy
|
| 11 |
import json
|
| 12 |
import random
|
|
@@ -17,6 +16,7 @@ import contextlib
|
|
| 17 |
import argparse
|
| 18 |
import os
|
| 19 |
from pathlib import Path
|
|
|
|
| 20 |
from typing import Literal, Any
|
| 21 |
from dateutil import parser, tz
|
| 22 |
|
|
@@ -61,12 +61,12 @@ class TableManager:
|
|
| 61 |
"""Return the name of the leaderboard."""
|
| 62 |
|
| 63 |
@abstractmethod
|
| 64 |
-
def get_intro_text(self) ->
|
| 65 |
-
"""Return the
|
| 66 |
|
| 67 |
@abstractmethod
|
| 68 |
-
def get_detail_text(self) ->
|
| 69 |
-
"""Return the
|
| 70 |
|
| 71 |
def get_benchmark_checkboxes(self) -> dict[str, list[str]]:
|
| 72 |
"""Return data for the benchmark selection checkboxes."""
|
|
@@ -84,7 +84,7 @@ class TableManager:
|
|
| 84 |
"""Return all available models."""
|
| 85 |
|
| 86 |
@abstractmethod
|
| 87 |
-
def set_filter_get_df(self, *filters) -> pd.DataFrame:
|
| 88 |
"""Set the current set of filters and return the filtered DataFrame."""
|
| 89 |
|
| 90 |
|
|
@@ -127,7 +127,7 @@ class LLMTableManager(TableManager):
|
|
| 127 |
model_df[key] = val
|
| 128 |
# Format the model name as an HTML anchor.
|
| 129 |
model_df["Model"] = self._wrap_model_name(model_info["url"], model_info["nickname"])
|
| 130 |
-
model_df["Params"] = model_info["params"]
|
| 131 |
res_df = pd.concat([res_df, model_df])
|
| 132 |
|
| 133 |
if res_df.empty:
|
|
@@ -137,7 +137,7 @@ class LLMTableManager(TableManager):
|
|
| 137 |
|
| 138 |
# Order columns
|
| 139 |
columns = res_df.columns.to_list()
|
| 140 |
-
cols_to_order = ["Model", "Params"]
|
| 141 |
cols_to_order.extend(self.schema.keys())
|
| 142 |
columns = cols_to_order + [col for col in columns if col not in cols_to_order]
|
| 143 |
res_df = res_df[columns]
|
|
@@ -145,21 +145,21 @@ class LLMTableManager(TableManager):
|
|
| 145 |
# Order rows
|
| 146 |
res_df = res_df.sort_values(by=["Model", *self.schema.keys(), "Energy/req (J)"])
|
| 147 |
|
| 148 |
-
self.
|
| 149 |
|
| 150 |
# We need to set the default view separately when `gr.State` is forked.
|
| 151 |
-
self.set_filter_get_df()
|
| 152 |
|
| 153 |
def get_benchmark_checkboxes(self) -> dict[str, list[str]]:
|
| 154 |
return self.schema
|
| 155 |
|
| 156 |
def get_benchmark_sliders(self) -> dict[str, tuple[float, float, float, float]]:
|
| 157 |
-
return {"Target Time Per Output Token
|
| 158 |
|
| 159 |
def get_all_models(self) -> list[str]:
|
| 160 |
return self.full_df["Model"].apply(self._unwrap_model_name).unique().tolist()
|
| 161 |
|
| 162 |
-
def set_filter_get_df(self, *filters) -> pd.DataFrame:
|
| 163 |
"""Set the current set of filters and return the filtered DataFrame.
|
| 164 |
|
| 165 |
Filters can either be completely empty, or be a concatenated list of
|
|
@@ -175,15 +175,15 @@ class LLMTableManager(TableManager):
|
|
| 175 |
# Checkboxes
|
| 176 |
for setup, choice in zip(self.schema, filters):
|
| 177 |
index = index & self.full_df[setup].isin(choice)
|
| 178 |
-
|
| 179 |
|
| 180 |
# Sliders (We just have TPOT for now.)
|
| 181 |
# For each `Model`, we want to first filter out rows whose `Avg TPOT (s)` is greater than the slider value.
|
| 182 |
# Finally, only just leave the row whose `Energy/req (J)` is the smallest.
|
| 183 |
tpot_slo = filters[-1]
|
| 184 |
-
|
| 185 |
-
|
| 186 |
-
.groupby("Model")[
|
| 187 |
.apply(lambda x: x[x["Avg TPOT (s)"] <= tpot_slo], include_groups=True)
|
| 188 |
.sort_values(by="Energy/req (J)")
|
| 189 |
.reset_index(drop=True)
|
|
@@ -191,26 +191,16 @@ class LLMTableManager(TableManager):
|
|
| 191 |
.head(1)
|
| 192 |
)
|
| 193 |
|
| 194 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 195 |
|
| 196 |
-
|
| 197 |
-
text = """
|
| 198 |
-
Columns
|
| 199 |
-
- **Model**: The name of the model.
|
| 200 |
-
- **GPU**: Name of the GPU model used for benchmarking.
|
| 201 |
-
- **Params**: Number of parameters in the model.
|
| 202 |
-
- **TP**: Tensor parallelism degree.
|
| 203 |
-
- **PP**: Pipeline parallelism degree. (TP * PP is the total number of GPUs used.)
|
| 204 |
-
- **Energy/req (J)**: Energy consumed per request in Joules.
|
| 205 |
-
- **Avg TPOT (s)**: Average time per output token in seconds.
|
| 206 |
-
- **Token tput (toks/s)**: Average number of tokens generated by the engine per second.
|
| 207 |
-
- **Avg Output Tokens**: Average number of output tokens in the LLM's response.
|
| 208 |
-
- **Avg BS**: Average batch size of the serving engine over time.
|
| 209 |
-
- **Max BS**: Maximum batch size configuration of the serving engine.
|
| 210 |
-
|
| 211 |
-
For more detailed information, please take a look at the **About** tab.
|
| 212 |
-
"""
|
| 213 |
-
return "markdown", text
|
| 214 |
|
| 215 |
|
| 216 |
class LLMChatTableManager(LLMTableManager):
|
|
@@ -219,21 +209,59 @@ class LLMChatTableManager(LLMTableManager):
|
|
| 219 |
def get_tab_name(self) -> str:
|
| 220 |
return "LLM Chat"
|
| 221 |
|
| 222 |
-
def get_intro_text(self) ->
|
| 223 |
text = """
|
| 224 |
<h2>How much energy do GenAI models consume?</h2>
|
| 225 |
|
| 226 |
<h3>LLM chatbot response generation</h3>
|
| 227 |
|
| 228 |
<p style="font-size: 16px">
|
| 229 |
-
|
|
|
|
| 230 |
</p>
|
| 231 |
|
| 232 |
<p style="font-size: 16px">
|
| 233 |
-
|
| 234 |
</p>
|
| 235 |
"""
|
| 236 |
-
return
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 237 |
|
| 238 |
|
| 239 |
class LLMCodeTableManager(LLMTableManager):
|
|
@@ -242,21 +270,58 @@ class LLMCodeTableManager(LLMTableManager):
|
|
| 242 |
def get_tab_name(self) -> str:
|
| 243 |
return "LLM Code"
|
| 244 |
|
| 245 |
-
def get_intro_text(self) ->
|
| 246 |
text = """
|
| 247 |
<h2>How much energy do GenAI models consume?</h2>
|
| 248 |
|
| 249 |
<h3>LLM code generation</h3>
|
| 250 |
|
| 251 |
<p style="font-size: 16px">
|
| 252 |
-
|
|
|
|
| 253 |
</p>
|
| 254 |
|
| 255 |
<p style="font-size: 16px">
|
| 256 |
-
|
| 257 |
</p>
|
| 258 |
"""
|
| 259 |
-
return
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 260 |
|
| 261 |
|
| 262 |
class VLMChatTableManager(LLMTableManager):
|
|
@@ -265,21 +330,58 @@ class VLMChatTableManager(LLMTableManager):
|
|
| 265 |
def get_tab_name(self) -> str:
|
| 266 |
return "VLM Visual Chat"
|
| 267 |
|
| 268 |
-
def get_intro_text(self) ->
|
| 269 |
text = """
|
| 270 |
<h2>How much energy do GenAI models consume?</h2>
|
| 271 |
|
| 272 |
<h3>VLM visual chatbot response generation</h3>
|
| 273 |
|
| 274 |
<p style="font-size: 16px">
|
| 275 |
-
|
|
|
|
| 276 |
</p>
|
| 277 |
|
| 278 |
<p style="font-size: 16px">
|
| 279 |
-
|
| 280 |
</p>
|
| 281 |
"""
|
| 282 |
-
return
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 283 |
|
| 284 |
|
| 285 |
class DiffusionTableManager(TableManager):
|
|
@@ -301,8 +403,10 @@ class DiffusionTableManager(TableManager):
|
|
| 301 |
|
| 302 |
if "to video" in task_name.lower():
|
| 303 |
self.energy_col = "Energy/video (J)"
|
|
|
|
| 304 |
elif "to image" in task_name.lower():
|
| 305 |
self.energy_col = "Energy/image (J)"
|
|
|
|
| 306 |
else:
|
| 307 |
raise ValueError(f"Unknown task name: {task_name=}")
|
| 308 |
|
|
@@ -348,10 +452,10 @@ class DiffusionTableManager(TableManager):
|
|
| 348 |
# Order rows
|
| 349 |
res_df = res_df.sort_values(by=["Model", *self.schema.keys(), self.energy_col])
|
| 350 |
|
| 351 |
-
self.
|
| 352 |
|
| 353 |
# We need to set the default view separately when `gr.State` is forked.
|
| 354 |
-
self.set_filter_get_df()
|
| 355 |
|
| 356 |
def get_benchmark_checkboxes(self) -> dict[str, list[str]]:
|
| 357 |
return self.schema
|
|
@@ -359,7 +463,7 @@ class DiffusionTableManager(TableManager):
|
|
| 359 |
def get_all_models(self) -> list[str]:
|
| 360 |
return self.full_df["Model"].apply(self._unwrap_model_name).unique().tolist()
|
| 361 |
|
| 362 |
-
def set_filter_get_df(self, *filters) -> pd.DataFrame:
|
| 363 |
"""Set the current set of filters and return the filtered DataFrame.
|
| 364 |
|
| 365 |
Filters can either be completely empty, or be a concatenated list of
|
|
@@ -375,15 +479,15 @@ class DiffusionTableManager(TableManager):
|
|
| 375 |
# Checkboxes
|
| 376 |
for setup, choice in zip(self.schema, filters):
|
| 377 |
index = index & self.full_df[setup].isin(choice)
|
| 378 |
-
|
| 379 |
|
| 380 |
# Sliders (We just have Batch latency for now.)
|
| 381 |
# For each `Model`, we want to first filter out rows whose `Batch latency (s)` is greater than the slider value.
|
| 382 |
# Finally, only just leave the row whose `Energy/image (J)` or `Energy/video (J)` is the smallest.
|
| 383 |
batch_latency = filters[-1]
|
| 384 |
-
|
| 385 |
-
|
| 386 |
-
.groupby("Model")[
|
| 387 |
.apply(
|
| 388 |
lambda x: x[x["Batch latency (s)"] <= batch_latency],
|
| 389 |
include_groups=True,
|
|
@@ -394,7 +498,19 @@ class DiffusionTableManager(TableManager):
|
|
| 394 |
.head(1)
|
| 395 |
)
|
| 396 |
|
| 397 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 398 |
|
| 399 |
|
| 400 |
class DiffusionT2ITableManager(DiffusionTableManager):
|
|
@@ -403,36 +519,49 @@ class DiffusionT2ITableManager(DiffusionTableManager):
|
|
| 403 |
def get_tab_name(self) -> str:
|
| 404 |
return "Diffusion Text to image"
|
| 405 |
|
| 406 |
-
def get_intro_text(self) ->
|
| 407 |
text = """
|
| 408 |
<h2>Diffusion text-to-image generation</h2></br>
|
| 409 |
|
| 410 |
<p style="font-size: 16px">
|
| 411 |
-
|
|
|
|
| 412 |
</p>
|
| 413 |
|
| 414 |
<p style="font-size: 16px">
|
| 415 |
-
|
| 416 |
</p>
|
| 417 |
"""
|
| 418 |
-
return
|
| 419 |
-
|
| 420 |
-
def get_detail_text(self) ->
|
| 421 |
-
|
| 422 |
-
|
| 423 |
-
|
| 424 |
-
|
| 425 |
-
|
| 426 |
-
|
| 427 |
-
|
| 428 |
-
|
| 429 |
-
|
| 430 |
-
|
| 431 |
-
|
| 432 |
-
|
| 433 |
-
|
| 434 |
-
|
| 435 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 436 |
|
| 437 |
def get_benchmark_sliders(self) -> dict[str, tuple[float, float, float, float]]:
|
| 438 |
return {"Batch latency (s)": (0.0, 60.0, 1.0, 10.0)}
|
|
@@ -444,37 +573,50 @@ class DiffusionT2VTableManager(DiffusionTableManager):
|
|
| 444 |
def get_tab_name(self) -> str:
|
| 445 |
return "Diffusion Text to video"
|
| 446 |
|
| 447 |
-
def get_intro_text(self) ->
|
| 448 |
text = """
|
| 449 |
<h2>Diffusion text-to-video generation</h2></br>
|
| 450 |
|
| 451 |
<p style="font-size: 16px">
|
| 452 |
-
|
|
|
|
| 453 |
</p>
|
| 454 |
|
| 455 |
<p style="font-size: 16px">
|
| 456 |
-
|
| 457 |
</p>
|
| 458 |
"""
|
| 459 |
-
return
|
| 460 |
-
|
| 461 |
-
def get_detail_text(self) ->
|
| 462 |
-
|
| 463 |
-
|
| 464 |
-
|
| 465 |
-
|
| 466 |
-
|
| 467 |
-
|
| 468 |
-
|
| 469 |
-
|
| 470 |
-
|
| 471 |
-
|
| 472 |
-
|
| 473 |
-
|
| 474 |
-
|
| 475 |
-
|
| 476 |
-
|
| 477 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 478 |
|
| 479 |
def get_benchmark_sliders(self) -> dict[str, tuple[float, float, float, float]]:
|
| 480 |
return {"Batch latency (s)": (0.0, 60.0, 1.0, 10.0)}
|
|
@@ -486,37 +628,50 @@ class DiffusionI2VTableManager(DiffusionTableManager):
|
|
| 486 |
def get_tab_name(self) -> str:
|
| 487 |
return "Diffusion Image to video"
|
| 488 |
|
| 489 |
-
def get_intro_text(self) ->
|
| 490 |
text = """
|
| 491 |
<h2>Diffusion image-to-video generation</h2></br>
|
| 492 |
|
| 493 |
<p style="font-size: 16px">
|
| 494 |
-
|
|
|
|
| 495 |
</p>
|
| 496 |
|
| 497 |
<p style="font-size: 16px">
|
| 498 |
-
|
| 499 |
</p>
|
| 500 |
"""
|
| 501 |
-
return
|
| 502 |
-
|
| 503 |
-
def get_detail_text(self) ->
|
| 504 |
-
|
| 505 |
-
|
| 506 |
-
|
| 507 |
-
|
| 508 |
-
|
| 509 |
-
|
| 510 |
-
|
| 511 |
-
|
| 512 |
-
|
| 513 |
-
|
| 514 |
-
|
| 515 |
-
|
| 516 |
-
|
| 517 |
-
|
| 518 |
-
|
| 519 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 520 |
|
| 521 |
def get_benchmark_sliders(self) -> dict[str, tuple[float, float, float, float]]:
|
| 522 |
return {"Batch latency (s)": (0.0, 120.0, 1.0, 45.0)}
|
|
@@ -563,7 +718,7 @@ class LegacyTableManager:
|
|
| 563 |
self.full_df = df
|
| 564 |
|
| 565 |
# Default view of the table is to only show the first options.
|
| 566 |
-
self.set_filter_get_df()
|
| 567 |
|
| 568 |
def _read_tables(self, data_dir: str) -> pd.DataFrame:
|
| 569 |
"""Read tables."""
|
|
@@ -622,7 +777,7 @@ class LegacyTableManager:
|
|
| 622 |
gr.Dropdown.update(choices=["None", *columns]),
|
| 623 |
]
|
| 624 |
|
| 625 |
-
def set_filter_get_df(self, *filters) -> pd.DataFrame:
|
| 626 |
"""Set the current set of filters and return the filtered DataFrame."""
|
| 627 |
# If the filter is empty, we default to the first choice for each key.
|
| 628 |
if not filters:
|
|
@@ -639,7 +794,7 @@ class LegacyTableManager:
|
|
| 639 |
"""Return the leaderboard's introduction text in HTML."""
|
| 640 |
return """
|
| 641 |
<div align="center">
|
| 642 |
-
<h2 style="color: #23d175">This is the legacy ML.ENERGY LLM leaderboard. This will be removed
|
| 643 |
</div>
|
| 644 |
|
| 645 |
<h3>How much energy do modern Large Language Models (LLMs) consume for inference?</h3>
|
|
@@ -795,6 +950,12 @@ table th:first-child {
|
|
| 795 |
#citation-header > div > span {
|
| 796 |
font-size: 16px !important;
|
| 797 |
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 798 |
"""
|
| 799 |
|
| 800 |
# The app will not start without a controller address set.
|
|
@@ -866,8 +1027,8 @@ def consumed_more_energy_message(energy_a, energy_b):
|
|
| 866 |
# Colosseum event handlers
|
| 867 |
def on_load():
|
| 868 |
"""Intialize the dataframe, shuffle the model preference dropdown choices."""
|
| 869 |
-
dataframe = global_ltbm.set_filter_get_df()
|
| 870 |
-
dataframes = [global_tbm.set_filter_get_df() for global_tbm in global_tbms]
|
| 871 |
return dataframe, *dataframes
|
| 872 |
|
| 873 |
|
|
@@ -980,6 +1141,14 @@ def play_again():
|
|
| 980 |
]
|
| 981 |
|
| 982 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 983 |
focus_prompt_input_js = """
|
| 984 |
function() {
|
| 985 |
for (let textarea of document.getElementsByTagName("textarea")) {
|
|
@@ -994,6 +1163,7 @@ function() {
|
|
| 994 |
with gr.Blocks(css=custom_css) as block:
|
| 995 |
tbm = gr.State(global_ltbm) # type: ignore
|
| 996 |
local_tbms: list[TableManager] = [gr.State(global_tbm) for global_tbm in global_tbms] # type: ignore
|
|
|
|
| 997 |
|
| 998 |
with gr.Box():
|
| 999 |
gr.HTML(
|
|
@@ -1144,19 +1314,16 @@ with gr.Blocks(css=custom_css) as block:
|
|
| 1144 |
|
| 1145 |
# Tab: Leaderboards.
|
| 1146 |
dataframes = []
|
|
|
|
|
|
|
|
|
|
| 1147 |
for global_tbm, local_tbm in zip(global_tbms, local_tbms):
|
| 1148 |
with gr.Tab(global_tbm.get_tab_name()):
|
| 1149 |
# Box: Introduction text.
|
| 1150 |
with gr.Box():
|
| 1151 |
-
|
| 1152 |
-
|
| 1153 |
-
|
| 1154 |
-
if intro_text_type == "markdown":
|
| 1155 |
-
gr.Markdown(intro_text)
|
| 1156 |
-
else:
|
| 1157 |
-
gr.HTML(intro_text)
|
| 1158 |
-
|
| 1159 |
-
# Block: Checkboxes and sliders to select benchmarking parameters.
|
| 1160 |
with gr.Row():
|
| 1161 |
checkboxes: list[gr.CheckboxGroup] = []
|
| 1162 |
for key, choices in global_tbm.get_benchmark_checkboxes().items():
|
|
@@ -1165,7 +1332,12 @@ with gr.Blocks(css=custom_css) as block:
|
|
| 1165 |
|
| 1166 |
sliders: list[gr.Slider] = []
|
| 1167 |
for key, (min_val, max_val, step, default) in global_tbm.get_benchmark_sliders().items():
|
| 1168 |
-
sliders.append(gr.Slider(minimum=min_val, maximum=max_val, value=default, step=step, label=key))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1169 |
|
| 1170 |
# Block: Leaderboard table.
|
| 1171 |
with gr.Row():
|
|
@@ -1173,6 +1345,7 @@ with gr.Blocks(css=custom_css) as block:
|
|
| 1173 |
type="pandas",
|
| 1174 |
elem_classes=["tab-leaderboard"],
|
| 1175 |
interactive=False,
|
|
|
|
| 1176 |
)
|
| 1177 |
dataframes.append(dataframe)
|
| 1178 |
|
|
@@ -1181,23 +1354,18 @@ with gr.Blocks(css=custom_css) as block:
|
|
| 1181 |
None, None, None, _js=dataframe_update_js, queue=False
|
| 1182 |
)
|
| 1183 |
# Table automatically updates when users check or uncheck any checkbox or move any slider.
|
| 1184 |
-
for element in [*checkboxes, *sliders]:
|
| 1185 |
element.change(
|
| 1186 |
global_tbm.__class__.set_filter_get_df,
|
| 1187 |
-
inputs=[local_tbm, *checkboxes, *sliders],
|
| 1188 |
outputs=dataframe,
|
| 1189 |
queue=False,
|
| 1190 |
)
|
| 1191 |
|
| 1192 |
# Block: More details about the leaderboard.
|
| 1193 |
with gr.Box():
|
| 1194 |
-
|
| 1195 |
-
|
| 1196 |
-
raise ValueError(f"Invalid text type '{detail_text_type}' from {local_tbm}")
|
| 1197 |
-
if detail_text_type == "markdown":
|
| 1198 |
-
gr.Markdown(detail_text)
|
| 1199 |
-
else:
|
| 1200 |
-
gr.HTML(detail_text)
|
| 1201 |
|
| 1202 |
# Block: Leaderboard date.
|
| 1203 |
with gr.Row():
|
|
@@ -1208,7 +1376,7 @@ with gr.Blocks(css=custom_css) as block:
|
|
| 1208 |
# Tab: Legacy leaderboard.
|
| 1209 |
with gr.Tab("LLM Leaderboard (legacy)"):
|
| 1210 |
with gr.Box():
|
| 1211 |
-
gr.
|
| 1212 |
|
| 1213 |
# Block: Checkboxes to select benchmarking parameters.
|
| 1214 |
with gr.Row():
|
|
@@ -1247,6 +1415,21 @@ with gr.Blocks(css=custom_css) as block:
|
|
| 1247 |
with gr.Tab("About"):
|
| 1248 |
gr.Markdown(open("docs/about.md").read())
|
| 1249 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1250 |
# Citation
|
| 1251 |
with gr.Accordion("📚 Citation", open=False, elem_id="citation-header"):
|
| 1252 |
citation_text = open("docs/citation.bib").read()
|
|
|
|
| 6 |
|
| 7 |
from __future__ import annotations
|
| 8 |
|
|
|
|
| 9 |
import copy
|
| 10 |
import json
|
| 11 |
import random
|
|
|
|
| 16 |
import argparse
|
| 17 |
import os
|
| 18 |
from pathlib import Path
|
| 19 |
+
from abc import abstractmethod
|
| 20 |
from typing import Literal, Any
|
| 21 |
from dateutil import parser, tz
|
| 22 |
|
|
|
|
| 61 |
"""Return the name of the leaderboard."""
|
| 62 |
|
| 63 |
@abstractmethod
|
| 64 |
+
def get_intro_text(self) -> str:
|
| 65 |
+
"""Return the introduction text to be inserted above the table."""
|
| 66 |
|
| 67 |
@abstractmethod
|
| 68 |
+
def get_detail_text(self, detail_mode: bool) -> str:
|
| 69 |
+
"""Return the detail text chunk to be inserted below the table."""
|
| 70 |
|
| 71 |
def get_benchmark_checkboxes(self) -> dict[str, list[str]]:
|
| 72 |
"""Return data for the benchmark selection checkboxes."""
|
|
|
|
| 84 |
"""Return all available models."""
|
| 85 |
|
| 86 |
@abstractmethod
|
| 87 |
+
def set_filter_get_df(self, detail_mode: bool, *filters) -> pd.DataFrame:
|
| 88 |
"""Set the current set of filters and return the filtered DataFrame."""
|
| 89 |
|
| 90 |
|
|
|
|
| 127 |
model_df[key] = val
|
| 128 |
# Format the model name as an HTML anchor.
|
| 129 |
model_df["Model"] = self._wrap_model_name(model_info["url"], model_info["nickname"])
|
| 130 |
+
model_df["Params (B)"] = model_info["params"]
|
| 131 |
res_df = pd.concat([res_df, model_df])
|
| 132 |
|
| 133 |
if res_df.empty:
|
|
|
|
| 137 |
|
| 138 |
# Order columns
|
| 139 |
columns = res_df.columns.to_list()
|
| 140 |
+
cols_to_order = ["Model", "Params (B)"]
|
| 141 |
cols_to_order.extend(self.schema.keys())
|
| 142 |
columns = cols_to_order + [col for col in columns if col not in cols_to_order]
|
| 143 |
res_df = res_df[columns]
|
|
|
|
| 145 |
# Order rows
|
| 146 |
res_df = res_df.sort_values(by=["Model", *self.schema.keys(), "Energy/req (J)"])
|
| 147 |
|
| 148 |
+
self.full_df = res_df.round(2)
|
| 149 |
|
| 150 |
# We need to set the default view separately when `gr.State` is forked.
|
| 151 |
+
self.set_filter_get_df(detail_mode=False)
|
| 152 |
|
| 153 |
def get_benchmark_checkboxes(self) -> dict[str, list[str]]:
|
| 154 |
return self.schema
|
| 155 |
|
| 156 |
def get_benchmark_sliders(self) -> dict[str, tuple[float, float, float, float]]:
|
| 157 |
+
return {"Target Average TPOT (Time Per Output Token) (s)": (0.0, 0.5, 0.01, 0.2)}
|
| 158 |
|
| 159 |
def get_all_models(self) -> list[str]:
|
| 160 |
return self.full_df["Model"].apply(self._unwrap_model_name).unique().tolist()
|
| 161 |
|
| 162 |
+
def set_filter_get_df(self, detail_mode: bool, *filters) -> pd.DataFrame:
|
| 163 |
"""Set the current set of filters and return the filtered DataFrame.
|
| 164 |
|
| 165 |
Filters can either be completely empty, or be a concatenated list of
|
|
|
|
| 175 |
# Checkboxes
|
| 176 |
for setup, choice in zip(self.schema, filters):
|
| 177 |
index = index & self.full_df[setup].isin(choice)
|
| 178 |
+
cur_df = self.full_df.loc[index]
|
| 179 |
|
| 180 |
# Sliders (We just have TPOT for now.)
|
| 181 |
# For each `Model`, we want to first filter out rows whose `Avg TPOT (s)` is greater than the slider value.
|
| 182 |
# Finally, only just leave the row whose `Energy/req (J)` is the smallest.
|
| 183 |
tpot_slo = filters[-1]
|
| 184 |
+
cur_df = (
|
| 185 |
+
cur_df
|
| 186 |
+
.groupby("Model")[cur_df.columns]
|
| 187 |
.apply(lambda x: x[x["Avg TPOT (s)"] <= tpot_slo], include_groups=True)
|
| 188 |
.sort_values(by="Energy/req (J)")
|
| 189 |
.reset_index(drop=True)
|
|
|
|
| 191 |
.head(1)
|
| 192 |
)
|
| 193 |
|
| 194 |
+
if not detail_mode:
|
| 195 |
+
core_columns = ["Model", "Params (B)", "GPU", "Energy/req (J)"]
|
| 196 |
+
readable_name_mapping = {
|
| 197 |
+
"Params (B)": "Parameters (Billions)",
|
| 198 |
+
"GPU": "GPU model",
|
| 199 |
+
"Energy/req (J)": "Energy per response (Joules)",
|
| 200 |
+
}
|
| 201 |
+
cur_df = cur_df[core_columns].rename(columns=readable_name_mapping)
|
| 202 |
|
| 203 |
+
return cur_df
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 204 |
|
| 205 |
|
| 206 |
class LLMChatTableManager(LLMTableManager):
|
|
|
|
| 209 |
def get_tab_name(self) -> str:
|
| 210 |
return "LLM Chat"
|
| 211 |
|
| 212 |
+
def get_intro_text(self) -> str:
|
| 213 |
text = """
|
| 214 |
<h2>How much energy do GenAI models consume?</h2>
|
| 215 |
|
| 216 |
<h3>LLM chatbot response generation</h3>
|
| 217 |
|
| 218 |
<p style="font-size: 16px">
|
| 219 |
+
Large language models (LLMs), especially the instruction-tuned ones, can generate human-like responses to chat prompts.
|
| 220 |
+
Using <a href="https://ml.energy/zeus">Zeus</a> for energy measurement, we created a leaderboard for LLM chat energy consumption.
|
| 221 |
</p>
|
| 222 |
|
| 223 |
<p style="font-size: 16px">
|
| 224 |
+
More models will be added over time. Stay tuned!
|
| 225 |
</p>
|
| 226 |
"""
|
| 227 |
+
return text
|
| 228 |
+
|
| 229 |
+
def get_detail_text(self, detail_mode: bool) -> str:
|
| 230 |
+
if detail_mode:
|
| 231 |
+
text = """
|
| 232 |
+
Columns
|
| 233 |
+
- **Model**: The name of the model.
|
| 234 |
+
- **Params (B)**: Number of parameters in the model.
|
| 235 |
+
- **GPU**: Name of the GPU model used for benchmarking.
|
| 236 |
+
- **TP**: Tensor parallelism degree.
|
| 237 |
+
- **PP**: Pipeline parallelism degree. (TP * PP is the total number of GPUs used.)
|
| 238 |
+
- **Energy/req (J)**: Energy consumed per request in Joules.
|
| 239 |
+
- **Avg TPOT (s)**: Average time per output token in seconds.
|
| 240 |
+
- **Token tput (toks/s)**: Average number of tokens generated by the engine per second.
|
| 241 |
+
- **Avg Output Tokens**: Average number of output tokens in the LLM's response.
|
| 242 |
+
- **Avg BS**: Average batch size of the serving engine over time.
|
| 243 |
+
- **Max BS**: Maximum batch size configuration of the serving engine.
|
| 244 |
+
|
| 245 |
+
**TPOT (Time Per Output Token)** is the time between each token generated by LLMs as part of their response.
|
| 246 |
+
An average TPOT of 0.20 seconds roughly corresponds to a person reading at 240 words per minute and assuming one word is 1.3 tokens on average.
|
| 247 |
+
You can tweak the TPOT slider to adjust the target average TPOT for the models.
|
| 248 |
+
|
| 249 |
+
For more detailed information, please take a look at the **About** tab.
|
| 250 |
+
"""
|
| 251 |
+
else:
|
| 252 |
+
text = """
|
| 253 |
+
Columns
|
| 254 |
+
- **Model**: The name of the model.
|
| 255 |
+
- **Parameters (Billions)**: Number of parameters in the model. This is the size of the model.
|
| 256 |
+
- **GPU model**: Name of the GPU model used for benchmarking.
|
| 257 |
+
- **Energy per response (Joules)**: Energy consumed for each LLM response in Joules.
|
| 258 |
+
|
| 259 |
+
Checking "Show more technical details" above the table will reveal more detailed columns.
|
| 260 |
+
Also, for more detailed information, please take a look at the **About** tab.
|
| 261 |
+
"""
|
| 262 |
+
|
| 263 |
+
return text
|
| 264 |
+
|
| 265 |
|
| 266 |
|
| 267 |
class LLMCodeTableManager(LLMTableManager):
|
|
|
|
| 270 |
def get_tab_name(self) -> str:
|
| 271 |
return "LLM Code"
|
| 272 |
|
| 273 |
+
def get_intro_text(self) -> str:
|
| 274 |
text = """
|
| 275 |
<h2>How much energy do GenAI models consume?</h2>
|
| 276 |
|
| 277 |
<h3>LLM code generation</h3>
|
| 278 |
|
| 279 |
<p style="font-size: 16px">
|
| 280 |
+
Large language models (LLMs) are also capable of generating code.
|
| 281 |
+
Using <a href="https://ml.energy/zeus">Zeus</a> for energy measurement, we created a leaderboard for the energy consumption of LLMs specifically trained for code generation.
|
| 282 |
</p>
|
| 283 |
|
| 284 |
<p style="font-size: 16px">
|
| 285 |
+
More models will be added over time. Stay tuned!
|
| 286 |
</p>
|
| 287 |
"""
|
| 288 |
+
return text
|
| 289 |
+
|
| 290 |
+
def get_detail_text(self, detail_mode: bool) -> str:
|
| 291 |
+
if detail_mode:
|
| 292 |
+
text = """
|
| 293 |
+
Columns
|
| 294 |
+
- **Model**: The name of the model.
|
| 295 |
+
- **Params (B)**: Number of parameters in the model.
|
| 296 |
+
- **GPU**: Name of the GPU model used for benchmarking.
|
| 297 |
+
- **TP**: Tensor parallelism degree.
|
| 298 |
+
- **PP**: Pipeline parallelism degree. (TP * PP is the total number of GPUs used.)
|
| 299 |
+
- **Energy/req (J)**: Energy consumed per request in Joules.
|
| 300 |
+
- **Avg TPOT (s)**: Average time per output token in seconds.
|
| 301 |
+
- **Token tput (toks/s)**: Average number of tokens generated by the engine per second.
|
| 302 |
+
- **Avg Output Tokens**: Average number of output tokens in the LLM's response.
|
| 303 |
+
- **Avg BS**: Average batch size of the serving engine over time.
|
| 304 |
+
- **Max BS**: Maximum batch size configuration of the serving engine.
|
| 305 |
+
|
| 306 |
+
**TPOT (Time Per Output Token)** is the time between each token generated by LLMs as part of their response.
|
| 307 |
+
An average TPOT of 0.20 seconds roughly corresponds to a person reading at 240 words per minute and assuming one word is 1.3 tokens on average.
|
| 308 |
+
You can tweak the TPOT slider to adjust the target average TPOT for the models.
|
| 309 |
+
|
| 310 |
+
For more detailed information, please take a look at the **About** tab.
|
| 311 |
+
"""
|
| 312 |
+
else:
|
| 313 |
+
text = """
|
| 314 |
+
Columns
|
| 315 |
+
- **Model**: The name of the model.
|
| 316 |
+
- **Parameters (Billions)**: Number of parameters in the model. This is the size of the model.
|
| 317 |
+
- **GPU model**: Name of the GPU model used for benchmarking.
|
| 318 |
+
- **Energy per response (Joules)**: Energy consumed for each LLM response in Joules.
|
| 319 |
+
|
| 320 |
+
Checking "Show more technical details" above the table will reveal more detailed columns.
|
| 321 |
+
Also, for more detailed information, please take a look at the **About** tab.
|
| 322 |
+
"""
|
| 323 |
+
|
| 324 |
+
return text
|
| 325 |
|
| 326 |
|
| 327 |
class VLMChatTableManager(LLMTableManager):
|
|
|
|
| 330 |
def get_tab_name(self) -> str:
|
| 331 |
return "VLM Visual Chat"
|
| 332 |
|
| 333 |
+
def get_intro_text(self) -> str:
|
| 334 |
text = """
|
| 335 |
<h2>How much energy do GenAI models consume?</h2>
|
| 336 |
|
| 337 |
<h3>VLM visual chatbot response generation</h3>
|
| 338 |
|
| 339 |
<p style="font-size: 16px">
|
| 340 |
+
Vision language models (VLMs) are large language models that can understand images along with text and generate human-like responses to chat prompts with images.
|
| 341 |
+
Using <a href="https://ml.energy/zeus">Zeus</a> for energy measurement, we created a leaderboard for VLM chat energy consumption.
|
| 342 |
</p>
|
| 343 |
|
| 344 |
<p style="font-size: 16px">
|
| 345 |
+
More models will be added over time. Stay tuned!
|
| 346 |
</p>
|
| 347 |
"""
|
| 348 |
+
return text
|
| 349 |
+
|
| 350 |
+
def get_detail_text(self, detail_mode: bool) -> str:
|
| 351 |
+
if detail_mode:
|
| 352 |
+
text = """
|
| 353 |
+
Columns
|
| 354 |
+
- **Model**: The name of the model.
|
| 355 |
+
- **Params (B)**: Number of parameters in the model.
|
| 356 |
+
- **GPU**: Name of the GPU model used for benchmarking.
|
| 357 |
+
- **TP**: Tensor parallelism degree.
|
| 358 |
+
- **PP**: Pipeline parallelism degree. (TP * PP is the total number of GPUs used.)
|
| 359 |
+
- **Energy/req (J)**: Energy consumed per request in Joules.
|
| 360 |
+
- **Avg TPOT (s)**: Average time per output token in seconds.
|
| 361 |
+
- **Token tput (toks/s)**: Average number of tokens generated by the engine per second.
|
| 362 |
+
- **Avg Output Tokens**: Average number of output tokens in the LLM's response.
|
| 363 |
+
- **Avg BS**: Average batch size of the serving engine over time.
|
| 364 |
+
- **Max BS**: Maximum batch size configuration of the serving engine.
|
| 365 |
+
|
| 366 |
+
**TPOT (Time Per Output Token)** is the time between each token generated by LLMs as part of their response.
|
| 367 |
+
An average TPOT of 0.20 seconds roughly corresponds to a person reading at 240 words per minute and assuming one word is 1.3 tokens on average.
|
| 368 |
+
You can tweak the TPOT slider to adjust the target average TPOT for the models.
|
| 369 |
+
|
| 370 |
+
For more detailed information, please take a look at the **About** tab.
|
| 371 |
+
"""
|
| 372 |
+
else:
|
| 373 |
+
text = """
|
| 374 |
+
Columns
|
| 375 |
+
- **Model**: The name of the model.
|
| 376 |
+
- **Parameters (Billions)**: Number of parameters in the model. This is the size of the model.
|
| 377 |
+
- **GPU model**: Name of the GPU model used for benchmarking.
|
| 378 |
+
- **Energy per response (Joules)**: Energy consumed for each LLM response in Joules.
|
| 379 |
+
|
| 380 |
+
Checking "Show more technical details" above the table will reveal more detailed columns.
|
| 381 |
+
Also, for more detailed information, please take a look at the **About** tab.
|
| 382 |
+
"""
|
| 383 |
+
|
| 384 |
+
return text
|
| 385 |
|
| 386 |
|
| 387 |
class DiffusionTableManager(TableManager):
|
|
|
|
| 403 |
|
| 404 |
if "to video" in task_name.lower():
|
| 405 |
self.energy_col = "Energy/video (J)"
|
| 406 |
+
self.energy_col_readable = "Energy per video (Joules)"
|
| 407 |
elif "to image" in task_name.lower():
|
| 408 |
self.energy_col = "Energy/image (J)"
|
| 409 |
+
self.energy_col_readable = "Energy per image (Joules)"
|
| 410 |
else:
|
| 411 |
raise ValueError(f"Unknown task name: {task_name=}")
|
| 412 |
|
|
|
|
| 452 |
# Order rows
|
| 453 |
res_df = res_df.sort_values(by=["Model", *self.schema.keys(), self.energy_col])
|
| 454 |
|
| 455 |
+
self.full_df = res_df.round(2)
|
| 456 |
|
| 457 |
# We need to set the default view separately when `gr.State` is forked.
|
| 458 |
+
self.set_filter_get_df(detail_mode=False)
|
| 459 |
|
| 460 |
def get_benchmark_checkboxes(self) -> dict[str, list[str]]:
|
| 461 |
return self.schema
|
|
|
|
| 463 |
def get_all_models(self) -> list[str]:
|
| 464 |
return self.full_df["Model"].apply(self._unwrap_model_name).unique().tolist()
|
| 465 |
|
| 466 |
+
def set_filter_get_df(self, detail_mode: bool, *filters) -> pd.DataFrame:
|
| 467 |
"""Set the current set of filters and return the filtered DataFrame.
|
| 468 |
|
| 469 |
Filters can either be completely empty, or be a concatenated list of
|
|
|
|
| 479 |
# Checkboxes
|
| 480 |
for setup, choice in zip(self.schema, filters):
|
| 481 |
index = index & self.full_df[setup].isin(choice)
|
| 482 |
+
cur_df = self.full_df.loc[index]
|
| 483 |
|
| 484 |
# Sliders (We just have Batch latency for now.)
|
| 485 |
# For each `Model`, we want to first filter out rows whose `Batch latency (s)` is greater than the slider value.
|
| 486 |
# Finally, only just leave the row whose `Energy/image (J)` or `Energy/video (J)` is the smallest.
|
| 487 |
batch_latency = filters[-1]
|
| 488 |
+
cur_df = (
|
| 489 |
+
cur_df
|
| 490 |
+
.groupby("Model")[cur_df.columns]
|
| 491 |
.apply(
|
| 492 |
lambda x: x[x["Batch latency (s)"] <= batch_latency],
|
| 493 |
include_groups=True,
|
|
|
|
| 498 |
.head(1)
|
| 499 |
)
|
| 500 |
|
| 501 |
+
if not detail_mode:
|
| 502 |
+
core_columns = ["Model", "Denoising params", "GPU", "Denoising steps", "Resolution", "Frames", self.energy_col]
|
| 503 |
+
readable_name_mapping = {
|
| 504 |
+
"Denoising params": "Denoising parameters (Billions)",
|
| 505 |
+
"GPU": "GPU model",
|
| 506 |
+
self.energy_col: self.energy_col_readable,
|
| 507 |
+
}
|
| 508 |
+
for column in cur_df.columns:
|
| 509 |
+
if column not in core_columns:
|
| 510 |
+
cur_df = cur_df.drop(column, axis=1)
|
| 511 |
+
cur_df = cur_df.rename(columns=readable_name_mapping)
|
| 512 |
+
|
| 513 |
+
return cur_df
|
| 514 |
|
| 515 |
|
| 516 |
class DiffusionT2ITableManager(DiffusionTableManager):
|
|
|
|
| 519 |
def get_tab_name(self) -> str:
|
| 520 |
return "Diffusion Text to image"
|
| 521 |
|
| 522 |
+
def get_intro_text(self) -> str:
|
| 523 |
text = """
|
| 524 |
<h2>Diffusion text-to-image generation</h2></br>
|
| 525 |
|
| 526 |
<p style="font-size: 16px">
|
| 527 |
+
Diffusion models generate images that align with input text prompts.
|
| 528 |
+
Using <a href="https://ml.energy/zeus">Zeus</a> for energy measurement, we created a leaderboard for the energy consumption of Diffusion text-to-image.
|
| 529 |
</p>
|
| 530 |
|
| 531 |
<p style="font-size: 16px">
|
| 532 |
+
More models will be added over time. Stay tuned!
|
| 533 |
</p>
|
| 534 |
"""
|
| 535 |
+
return text
|
| 536 |
+
|
| 537 |
+
def get_detail_text(self, detail_mode: bool) -> str:
|
| 538 |
+
if detail_mode:
|
| 539 |
+
text = """
|
| 540 |
+
Columns
|
| 541 |
+
- **Model**: The name of the model.
|
| 542 |
+
- **Denoising params**: Number of parameters in the denosing module (e.g., UNet, Transformer).
|
| 543 |
+
- **Total params**: Total number of parameters in the model, including encoders and decoders.
|
| 544 |
+
- **GPU**: Name of the GPU model used for benchmarking.
|
| 545 |
+
- **Energy/image (J)**: Energy consumed per generated image in Joules.
|
| 546 |
+
- **Batch latency (s)**: Time taken to generate a batch of images in seconds.
|
| 547 |
+
- **Batch size**: Number of prompts/images in a batch.
|
| 548 |
+
- **Denoising steps**: Number of denoising steps used for the diffusion model.
|
| 549 |
+
- **Resolution**: Resolution of the generated image.
|
| 550 |
+
|
| 551 |
+
For more detailed information, please take a look at the **About** tab.
|
| 552 |
+
"""
|
| 553 |
+
else:
|
| 554 |
+
text = """
|
| 555 |
+
Columns
|
| 556 |
+
- **Model**: The name of the model.
|
| 557 |
+
- **Denoising parameters (Billions)**: Number of parameters in the diffusion model's (core) denoising module. This part of the model is run repetitively to generate gradually refine the image.
|
| 558 |
+
- **GPU model**: Name of the GPU model used for benchmarking.
|
| 559 |
+
- **Energy per image (Joules)**: Energy consumed for each generated image in Joules.
|
| 560 |
+
|
| 561 |
+
Checking "Show more technical details" above the table will reveal more detailed columns.
|
| 562 |
+
Also, for more detailed information, please take a look at the **About** tab.
|
| 563 |
+
"""
|
| 564 |
+
return text
|
| 565 |
|
| 566 |
def get_benchmark_sliders(self) -> dict[str, tuple[float, float, float, float]]:
|
| 567 |
return {"Batch latency (s)": (0.0, 60.0, 1.0, 10.0)}
|
|
|
|
| 573 |
def get_tab_name(self) -> str:
|
| 574 |
return "Diffusion Text to video"
|
| 575 |
|
| 576 |
+
def get_intro_text(self) -> str:
|
| 577 |
text = """
|
| 578 |
<h2>Diffusion text-to-video generation</h2></br>
|
| 579 |
|
| 580 |
<p style="font-size: 16px">
|
| 581 |
+
Diffusion models generate videos that align with input text prompts.
|
| 582 |
+
Using <a href="https://ml.energy/zeus">Zeus</a> for energy measurement, we created a leaderboard for the energy consumption of Diffusion text-to-video.
|
| 583 |
</p>
|
| 584 |
|
| 585 |
<p style="font-size: 16px">
|
| 586 |
+
More models will be added over time. Stay tuned!
|
| 587 |
</p>
|
| 588 |
"""
|
| 589 |
+
return text
|
| 590 |
+
|
| 591 |
+
def get_detail_text(self, detail_mode: bool) -> str:
|
| 592 |
+
if detail_mode:
|
| 593 |
+
text = """
|
| 594 |
+
Columns
|
| 595 |
+
- **Model**: The name of the model.
|
| 596 |
+
- **Denoising params**: Number of parameters in the denosing module (e.g., UNet, Transformer).
|
| 597 |
+
- **Total params**: Total number of parameters in the model, including encoders and decoders.
|
| 598 |
+
- **GPU**: Name of the GPU model used for benchmarking.
|
| 599 |
+
- **Energy/video (J)**: Energy consumed per generated video in Joules.
|
| 600 |
+
- **Batch latency (s)**: Time taken to generate a batch of videos in seconds.
|
| 601 |
+
- **Batch size**: Number of prompts/videos in a batch.
|
| 602 |
+
- **Denoising steps**: Number of denoising steps used for the diffusion model.
|
| 603 |
+
- **Frames**: Number of frames in the generated video.
|
| 604 |
+
- **Resolution**: Resolution of the generated video.
|
| 605 |
+
|
| 606 |
+
For more detailed information, please take a look at the **About** tab.
|
| 607 |
+
"""
|
| 608 |
+
else:
|
| 609 |
+
text = """
|
| 610 |
+
Columns
|
| 611 |
+
- **Model**: The name of the model.
|
| 612 |
+
- **Denoising parameters (Billions)**: Number of parameters in the diffusion model's (core) denoising module. This part of the model is run repetitively to generate gradually refine the video.
|
| 613 |
+
- **GPU model**: Name of the GPU model used for benchmarking.
|
| 614 |
+
- **Energy per video (Joules)**: Energy consumed for each generated image in Joules.
|
| 615 |
+
|
| 616 |
+
Checking "Show more technical details" above the table will reveal more detailed columns.
|
| 617 |
+
Also, for more detailed information, please take a look at the **About** tab.
|
| 618 |
+
"""
|
| 619 |
+
return text
|
| 620 |
|
| 621 |
def get_benchmark_sliders(self) -> dict[str, tuple[float, float, float, float]]:
|
| 622 |
return {"Batch latency (s)": (0.0, 60.0, 1.0, 10.0)}
|
|
|
|
| 628 |
def get_tab_name(self) -> str:
|
| 629 |
return "Diffusion Image to video"
|
| 630 |
|
| 631 |
+
def get_intro_text(self) -> str:
|
| 632 |
text = """
|
| 633 |
<h2>Diffusion image-to-video generation</h2></br>
|
| 634 |
|
| 635 |
<p style="font-size: 16px">
|
| 636 |
+
Diffusion models generate videos given an input image (and sometimes alongside with text).
|
| 637 |
+
Using <a href="https://ml.energy/zeus">Zeus</a> for energy measurement, we created a leaderboard for the energy consumption of Diffusion image-to-video.
|
| 638 |
</p>
|
| 639 |
|
| 640 |
<p style="font-size: 16px">
|
| 641 |
+
More models will be added over time. Stay tuned!
|
| 642 |
</p>
|
| 643 |
"""
|
| 644 |
+
return text
|
| 645 |
+
|
| 646 |
+
def get_detail_text(self, detail_mode: bool) -> str:
|
| 647 |
+
if detail_mode:
|
| 648 |
+
text = """
|
| 649 |
+
Columns
|
| 650 |
+
- **Model**: The name of the model.
|
| 651 |
+
- **Denoising params**: Number of parameters in the denosing module (e.g., UNet, Transformer).
|
| 652 |
+
- **Total params**: Total number of parameters in the model, including encoders and decoders.
|
| 653 |
+
- **GPU**: Name of the GPU model used for benchmarking.
|
| 654 |
+
- **Energy/video (J)**: Energy consumed per generated video in Joules.
|
| 655 |
+
- **Batch latency (s)**: Time taken to generate a batch of videos in seconds.
|
| 656 |
+
- **Batch size**: Number of prompts/videos in a batch.
|
| 657 |
+
- **Denoising steps**: Number of denoising steps used for the diffusion model.
|
| 658 |
+
- **Frames**: Number of frames in the generated video.
|
| 659 |
+
- **Resolution**: Resolution of the generated video.
|
| 660 |
+
|
| 661 |
+
For more detailed information, please take a look at the **About** tab.
|
| 662 |
+
"""
|
| 663 |
+
else:
|
| 664 |
+
text = """
|
| 665 |
+
Columns
|
| 666 |
+
- **Model**: The name of the model.
|
| 667 |
+
- **Denoising parameters (Billions)**: Number of parameters in the diffusion model's (core) denoising module. This part of the model is run repetitively to generate gradually refine the video.
|
| 668 |
+
- **GPU model**: Name of the GPU model used for benchmarking.
|
| 669 |
+
- **Energy per video (Joules)**: Energy consumed for each generated image in Joules.
|
| 670 |
+
|
| 671 |
+
Checking "Show more technical details" above the table will reveal more detailed columns.
|
| 672 |
+
Also, for more detailed information, please take a look at the **About** tab.
|
| 673 |
+
"""
|
| 674 |
+
return text
|
| 675 |
|
| 676 |
def get_benchmark_sliders(self) -> dict[str, tuple[float, float, float, float]]:
|
| 677 |
return {"Batch latency (s)": (0.0, 120.0, 1.0, 45.0)}
|
|
|
|
| 718 |
self.full_df = df
|
| 719 |
|
| 720 |
# Default view of the table is to only show the first options.
|
| 721 |
+
self.set_filter_get_df(detail_mode=False)
|
| 722 |
|
| 723 |
def _read_tables(self, data_dir: str) -> pd.DataFrame:
|
| 724 |
"""Read tables."""
|
|
|
|
| 777 |
gr.Dropdown.update(choices=["None", *columns]),
|
| 778 |
]
|
| 779 |
|
| 780 |
+
def set_filter_get_df(self, detail_mode: bool, *filters) -> pd.DataFrame:
|
| 781 |
"""Set the current set of filters and return the filtered DataFrame."""
|
| 782 |
# If the filter is empty, we default to the first choice for each key.
|
| 783 |
if not filters:
|
|
|
|
| 794 |
"""Return the leaderboard's introduction text in HTML."""
|
| 795 |
return """
|
| 796 |
<div align="center">
|
| 797 |
+
<h2 style="color: #23d175">This is the legacy ML.ENERGY LLM leaderboard. This will be removed at the end of this year.</h2>
|
| 798 |
</div>
|
| 799 |
|
| 800 |
<h3>How much energy do modern Large Language Models (LLMs) consume for inference?</h3>
|
|
|
|
| 950 |
#citation-header > div > span {
|
| 951 |
font-size: 16px !important;
|
| 952 |
}
|
| 953 |
+
|
| 954 |
+
/* Align everything in tables to the right. */
|
| 955 |
+
/* Not the best solution, but at least makes the numbers align. */
|
| 956 |
+
.tab-leaderboard span {
|
| 957 |
+
text-align: right;
|
| 958 |
+
}
|
| 959 |
"""
|
| 960 |
|
| 961 |
# The app will not start without a controller address set.
|
|
|
|
| 1027 |
# Colosseum event handlers
|
| 1028 |
def on_load():
|
| 1029 |
"""Intialize the dataframe, shuffle the model preference dropdown choices."""
|
| 1030 |
+
dataframe = global_ltbm.set_filter_get_df(detail_mode=False)
|
| 1031 |
+
dataframes = [global_tbm.set_filter_get_df(detail_mode=False) for global_tbm in global_tbms]
|
| 1032 |
return dataframe, *dataframes
|
| 1033 |
|
| 1034 |
|
|
|
|
| 1141 |
]
|
| 1142 |
|
| 1143 |
|
| 1144 |
+
def toggle_detail_mode_slider_visibility(detail_mode: bool, *sliders):
|
| 1145 |
+
return [detail_mode] + [gr.update(visible=detail_mode)] * len(sliders)
|
| 1146 |
+
|
| 1147 |
+
|
| 1148 |
+
def toggle_detail_mode_sync_tabs(detail_mode: bool, *checkboxes):
|
| 1149 |
+
return [gr.Checkbox.update(value=detail_mode)] * len(checkboxes) + [gr.Markdown.update(tbm.get_detail_text(detail_mode)) for tbm in global_tbms]
|
| 1150 |
+
|
| 1151 |
+
|
| 1152 |
focus_prompt_input_js = """
|
| 1153 |
function() {
|
| 1154 |
for (let textarea of document.getElementsByTagName("textarea")) {
|
|
|
|
| 1163 |
with gr.Blocks(css=custom_css) as block:
|
| 1164 |
tbm = gr.State(global_ltbm) # type: ignore
|
| 1165 |
local_tbms: list[TableManager] = [gr.State(global_tbm) for global_tbm in global_tbms] # type: ignore
|
| 1166 |
+
detail_mode = gr.State(False) # type: ignore
|
| 1167 |
|
| 1168 |
with gr.Box():
|
| 1169 |
gr.HTML(
|
|
|
|
| 1314 |
|
| 1315 |
# Tab: Leaderboards.
|
| 1316 |
dataframes = []
|
| 1317 |
+
all_detail_mode_checkboxes = []
|
| 1318 |
+
all_sliders = []
|
| 1319 |
+
all_detail_text_components = []
|
| 1320 |
for global_tbm, local_tbm in zip(global_tbms, local_tbms):
|
| 1321 |
with gr.Tab(global_tbm.get_tab_name()):
|
| 1322 |
# Box: Introduction text.
|
| 1323 |
with gr.Box():
|
| 1324 |
+
gr.Markdown(global_tbm.get_intro_text())
|
| 1325 |
+
|
| 1326 |
+
# Block: Checkboxes and sliders to select benchmarking parameters. A detail mode checkbox.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1327 |
with gr.Row():
|
| 1328 |
checkboxes: list[gr.CheckboxGroup] = []
|
| 1329 |
for key, choices in global_tbm.get_benchmark_checkboxes().items():
|
|
|
|
| 1332 |
|
| 1333 |
sliders: list[gr.Slider] = []
|
| 1334 |
for key, (min_val, max_val, step, default) in global_tbm.get_benchmark_sliders().items():
|
| 1335 |
+
sliders.append(gr.Slider(minimum=min_val, maximum=max_val, value=default, step=step, label=key, visible=detail_mode.value))
|
| 1336 |
+
all_sliders.extend(sliders)
|
| 1337 |
+
|
| 1338 |
+
with gr.Row():
|
| 1339 |
+
detail_mode_checkbox = gr.Checkbox(label="Show more technical details", value=False)
|
| 1340 |
+
all_detail_mode_checkboxes.append(detail_mode_checkbox)
|
| 1341 |
|
| 1342 |
# Block: Leaderboard table.
|
| 1343 |
with gr.Row():
|
|
|
|
| 1345 |
type="pandas",
|
| 1346 |
elem_classes=["tab-leaderboard"],
|
| 1347 |
interactive=False,
|
| 1348 |
+
max_rows=1000,
|
| 1349 |
)
|
| 1350 |
dataframes.append(dataframe)
|
| 1351 |
|
|
|
|
| 1354 |
None, None, None, _js=dataframe_update_js, queue=False
|
| 1355 |
)
|
| 1356 |
# Table automatically updates when users check or uncheck any checkbox or move any slider.
|
| 1357 |
+
for element in [detail_mode_checkbox, *checkboxes, *sliders]:
|
| 1358 |
element.change(
|
| 1359 |
global_tbm.__class__.set_filter_get_df,
|
| 1360 |
+
inputs=[local_tbm, detail_mode, *checkboxes, *sliders],
|
| 1361 |
outputs=dataframe,
|
| 1362 |
queue=False,
|
| 1363 |
)
|
| 1364 |
|
| 1365 |
# Block: More details about the leaderboard.
|
| 1366 |
with gr.Box():
|
| 1367 |
+
detail_text = global_tbm.get_detail_text(detail_mode=False)
|
| 1368 |
+
all_detail_text_components.append(gr.Markdown(detail_text))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1369 |
|
| 1370 |
# Block: Leaderboard date.
|
| 1371 |
with gr.Row():
|
|
|
|
| 1376 |
# Tab: Legacy leaderboard.
|
| 1377 |
with gr.Tab("LLM Leaderboard (legacy)"):
|
| 1378 |
with gr.Box():
|
| 1379 |
+
gr.Markdown(global_ltbm.get_intro_text())
|
| 1380 |
|
| 1381 |
# Block: Checkboxes to select benchmarking parameters.
|
| 1382 |
with gr.Row():
|
|
|
|
| 1415 |
with gr.Tab("About"):
|
| 1416 |
gr.Markdown(open("docs/about.md").read())
|
| 1417 |
|
| 1418 |
+
# Detail mode toggling.
|
| 1419 |
+
for detail_mode_checkbox in all_detail_mode_checkboxes:
|
| 1420 |
+
detail_mode_checkbox.change(
|
| 1421 |
+
toggle_detail_mode_slider_visibility,
|
| 1422 |
+
inputs=[detail_mode_checkbox, *all_sliders],
|
| 1423 |
+
outputs=[detail_mode, *all_sliders],
|
| 1424 |
+
queue=False,
|
| 1425 |
+
)
|
| 1426 |
+
detail_mode_checkbox.change(
|
| 1427 |
+
toggle_detail_mode_sync_tabs,
|
| 1428 |
+
inputs=[detail_mode_checkbox, *all_detail_mode_checkboxes],
|
| 1429 |
+
outputs=[*all_detail_mode_checkboxes, *all_detail_text_components],
|
| 1430 |
+
queue=False,
|
| 1431 |
+
)
|
| 1432 |
+
|
| 1433 |
# Citation
|
| 1434 |
with gr.Accordion("📚 Citation", open=False, elem_id="citation-header"):
|
| 1435 |
citation_text = open("docs/citation.bib").read()
|
data/diffusion/image-to-video/models.json
CHANGED
|
@@ -2,22 +2,22 @@
|
|
| 2 |
"ali-vilab/i2vgen-xl": {
|
| 3 |
"url": "https://huggingface.co/ali-vilab/i2vgen-xl",
|
| 4 |
"nickname": "I2VGen XL",
|
| 5 |
-
"total_params":
|
| 6 |
-
"denoising_params":
|
| 7 |
"resolution": "1280x720"
|
| 8 |
},
|
| 9 |
"stabilityai/stable-video-diffusion-img2vid": {
|
| 10 |
"url": "https://huggingface.co/stabilityai/stable-video-diffusion-img2vid",
|
| 11 |
"nickname": "Stable Video Diffusion",
|
| 12 |
-
"total_params":
|
| 13 |
-
"denoising_params":
|
| 14 |
"resolution": "1024x576"
|
| 15 |
},
|
| 16 |
"stabilityai/stable-video-diffusion-img2vid-xt": {
|
| 17 |
"url": "https://huggingface.co/stabilityai/stable-video-diffusion-img2vid-xt",
|
| 18 |
"nickname": "Stable Video Diffusion xt",
|
| 19 |
-
"total_params":
|
| 20 |
-
"denoising_params":
|
| 21 |
"resolution": "1024x576"
|
| 22 |
}
|
| 23 |
}
|
|
|
|
| 2 |
"ali-vilab/i2vgen-xl": {
|
| 3 |
"url": "https://huggingface.co/ali-vilab/i2vgen-xl",
|
| 4 |
"nickname": "I2VGen XL",
|
| 5 |
+
"total_params": 2.5,
|
| 6 |
+
"denoising_params": 1.4,
|
| 7 |
"resolution": "1280x720"
|
| 8 |
},
|
| 9 |
"stabilityai/stable-video-diffusion-img2vid": {
|
| 10 |
"url": "https://huggingface.co/stabilityai/stable-video-diffusion-img2vid",
|
| 11 |
"nickname": "Stable Video Diffusion",
|
| 12 |
+
"total_params": 2.3,
|
| 13 |
+
"denoising_params": 1.5,
|
| 14 |
"resolution": "1024x576"
|
| 15 |
},
|
| 16 |
"stabilityai/stable-video-diffusion-img2vid-xt": {
|
| 17 |
"url": "https://huggingface.co/stabilityai/stable-video-diffusion-img2vid-xt",
|
| 18 |
"nickname": "Stable Video Diffusion xt",
|
| 19 |
+
"total_params": 2.3,
|
| 20 |
+
"denoising_params": 1.5,
|
| 21 |
"resolution": "1024x576"
|
| 22 |
}
|
| 23 |
}
|
data/diffusion/text-to-image/models.json
CHANGED
|
@@ -2,57 +2,57 @@
|
|
| 2 |
"kandinsky-community/kandinsky-2-2-decoder": {
|
| 3 |
"url": "https://huggingface.co/kandinsky-community/kandinsky-2-2-decoder",
|
| 4 |
"nickname": "Kandinsky 2.2",
|
| 5 |
-
"total_params":
|
| 6 |
-
"denoising_params":
|
| 7 |
"resolution": "512x512"
|
| 8 |
},
|
| 9 |
"kandinsky-community/kandinsky-3": {
|
| 10 |
"url": "https://huggingface.co/kandinsky-community/kandinsky-3",
|
| 11 |
"nickname": "Kandinsky 3",
|
| 12 |
-
"total_params":
|
| 13 |
-
"denoising_params":
|
| 14 |
"resolution": "1024x1024"
|
| 15 |
},
|
| 16 |
"prompthero/openjourney-v4": {
|
| 17 |
"url": "https://huggingface.co/prompthero/openjourney-v4",
|
| 18 |
"nickname": "Openjourney V4",
|
| 19 |
-
"total_params":
|
| 20 |
-
"denoising_params":
|
| 21 |
"resolution": "512x512"
|
| 22 |
},
|
| 23 |
"segmind/SSD-1B": {
|
| 24 |
"url": "https://huggingface.co/segmind/SSD-1B",
|
| 25 |
"nickname": "SSD 1B",
|
| 26 |
-
"total_params":
|
| 27 |
-
"denoising_params":
|
| 28 |
"resolution": "1024x1024"
|
| 29 |
},
|
| 30 |
"stabilityai/sdxl-turbo": {
|
| 31 |
"url": "https://huggingface.co/stabilityai/sdxl-turbo",
|
| 32 |
"nickname": "Stable Diffusion XL Turbo",
|
| 33 |
-
"total_params":
|
| 34 |
-
"denoising_params":
|
| 35 |
"resolution": "512x512"
|
| 36 |
},
|
| 37 |
"stabilityai/stable-diffusion-2-1": {
|
| 38 |
"url": "https://huggingface.co/stabilityai/stable-diffusion-2-1",
|
| 39 |
"nickname": "Stable Diffusion 2.1",
|
| 40 |
-
"total_params":
|
| 41 |
-
"denoising_params":
|
| 42 |
"resolution": "768x768"
|
| 43 |
},
|
| 44 |
"stabilityai/stable-diffusion-3-medium-diffusers": {
|
| 45 |
"url": "https://huggingface.co/stabilityai/stable-diffusion-3-medium-diffusers",
|
| 46 |
"nickname": "Stable Diffusion 3 Medium",
|
| 47 |
-
"total_params":
|
| 48 |
-
"denoising_params":
|
| 49 |
"resolution": "1024x1024"
|
| 50 |
},
|
| 51 |
"stabilityai/stable-diffusion-xl-base-1.0": {
|
| 52 |
"url": "https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0",
|
| 53 |
"nickname": "Stable Diffusion XL Base 1.0",
|
| 54 |
-
"total_params":
|
| 55 |
-
"denoising_params":
|
| 56 |
"resolution": "1024x1024"
|
| 57 |
}
|
| 58 |
}
|
|
|
|
| 2 |
"kandinsky-community/kandinsky-2-2-decoder": {
|
| 3 |
"url": "https://huggingface.co/kandinsky-community/kandinsky-2-2-decoder",
|
| 4 |
"nickname": "Kandinsky 2.2",
|
| 5 |
+
"total_params": 4.9,
|
| 6 |
+
"denoising_params": 1.3,
|
| 7 |
"resolution": "512x512"
|
| 8 |
},
|
| 9 |
"kandinsky-community/kandinsky-3": {
|
| 10 |
"url": "https://huggingface.co/kandinsky-community/kandinsky-3",
|
| 11 |
"nickname": "Kandinsky 3",
|
| 12 |
+
"total_params": 12.0,
|
| 13 |
+
"denoising_params": 3.1,
|
| 14 |
"resolution": "1024x1024"
|
| 15 |
},
|
| 16 |
"prompthero/openjourney-v4": {
|
| 17 |
"url": "https://huggingface.co/prompthero/openjourney-v4",
|
| 18 |
"nickname": "Openjourney V4",
|
| 19 |
+
"total_params": 1.1,
|
| 20 |
+
"denoising_params": 0.9,
|
| 21 |
"resolution": "512x512"
|
| 22 |
},
|
| 23 |
"segmind/SSD-1B": {
|
| 24 |
"url": "https://huggingface.co/segmind/SSD-1B",
|
| 25 |
"nickname": "SSD 1B",
|
| 26 |
+
"total_params": 2.2,
|
| 27 |
+
"denoising_params": 1.3,
|
| 28 |
"resolution": "1024x1024"
|
| 29 |
},
|
| 30 |
"stabilityai/sdxl-turbo": {
|
| 31 |
"url": "https://huggingface.co/stabilityai/sdxl-turbo",
|
| 32 |
"nickname": "Stable Diffusion XL Turbo",
|
| 33 |
+
"total_params": 3.5,
|
| 34 |
+
"denoising_params": 2.6,
|
| 35 |
"resolution": "512x512"
|
| 36 |
},
|
| 37 |
"stabilityai/stable-diffusion-2-1": {
|
| 38 |
"url": "https://huggingface.co/stabilityai/stable-diffusion-2-1",
|
| 39 |
"nickname": "Stable Diffusion 2.1",
|
| 40 |
+
"total_params": 1.3,
|
| 41 |
+
"denoising_params": 0.9,
|
| 42 |
"resolution": "768x768"
|
| 43 |
},
|
| 44 |
"stabilityai/stable-diffusion-3-medium-diffusers": {
|
| 45 |
"url": "https://huggingface.co/stabilityai/stable-diffusion-3-medium-diffusers",
|
| 46 |
"nickname": "Stable Diffusion 3 Medium",
|
| 47 |
+
"total_params": 7.7,
|
| 48 |
+
"denoising_params": 2.0,
|
| 49 |
"resolution": "1024x1024"
|
| 50 |
},
|
| 51 |
"stabilityai/stable-diffusion-xl-base-1.0": {
|
| 52 |
"url": "https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0",
|
| 53 |
"nickname": "Stable Diffusion XL Base 1.0",
|
| 54 |
+
"total_params": 3.5,
|
| 55 |
+
"denoising_params": 2.6,
|
| 56 |
"resolution": "1024x1024"
|
| 57 |
}
|
| 58 |
}
|
data/diffusion/text-to-video/models.json
CHANGED
|
@@ -2,15 +2,15 @@
|
|
| 2 |
"ali-vilab/text-to-video-ms-1.7b": {
|
| 3 |
"url": "https://huggingface.co/ali-vilab/text-to-video-ms-1.7b",
|
| 4 |
"nickname": "ModelScope T2V",
|
| 5 |
-
"total_params":
|
| 6 |
-
"denoising_params":
|
| 7 |
"resolution": "256x256"
|
| 8 |
},
|
| 9 |
"guoyww/animatediff-motion-adapter-v1-5-3": {
|
| 10 |
"url": "https://huggingface.co/guoyww/animatediff-motion-adapter-v1-5-3",
|
| 11 |
"nickname": "Animatediff",
|
| 12 |
-
"total_params":
|
| 13 |
-
"denoising_params":
|
| 14 |
"resolution": "512x512"
|
| 15 |
}
|
| 16 |
}
|
|
|
|
| 2 |
"ali-vilab/text-to-video-ms-1.7b": {
|
| 3 |
"url": "https://huggingface.co/ali-vilab/text-to-video-ms-1.7b",
|
| 4 |
"nickname": "ModelScope T2V",
|
| 5 |
+
"total_params": 1.8,
|
| 6 |
+
"denoising_params": 1.4,
|
| 7 |
"resolution": "256x256"
|
| 8 |
},
|
| 9 |
"guoyww/animatediff-motion-adapter-v1-5-3": {
|
| 10 |
"url": "https://huggingface.co/guoyww/animatediff-motion-adapter-v1-5-3",
|
| 11 |
"nickname": "Animatediff",
|
| 12 |
+
"total_params": 1.9,
|
| 13 |
+
"denoising_params": 1.3,
|
| 14 |
"resolution": "512x512"
|
| 15 |
}
|
| 16 |
}
|
data/llm_text_generation/chat/models.json
CHANGED
|
@@ -2,71 +2,71 @@
|
|
| 2 |
"google/gemma-2-27b-it": {
|
| 3 |
"url": "https://huggingface.co/google/gemma-2-27b-it",
|
| 4 |
"nickname": "Gemma 2 27B",
|
| 5 |
-
"params":
|
| 6 |
},
|
| 7 |
"google/gemma-2-2b-it": {
|
| 8 |
"url": "https://huggingface.co/google/gemma-2-2b-it",
|
| 9 |
"nickname": "Gemma 2 2B",
|
| 10 |
-
"params":
|
| 11 |
},
|
| 12 |
"google/gemma-2-9b-it": {
|
| 13 |
"url": "https://huggingface.co/google/gemma-2-9b-it",
|
| 14 |
"nickname": "Gemma 2 9B",
|
| 15 |
-
"params":
|
| 16 |
},
|
| 17 |
"meta-llama/Meta-Llama-3.1-70B-Instruct": {
|
| 18 |
"url": "https://huggingface.co/meta-llama/Meta-Llama-3.1-70B-Instruct",
|
| 19 |
"nickname": "Llama 3.1 70B",
|
| 20 |
-
"params":
|
| 21 |
},
|
| 22 |
"meta-llama/Meta-Llama-3.1-405B-Instruct": {
|
| 23 |
"url": "https://huggingface.co/meta-llama/Meta-Llama-3.1-405B-Instruct",
|
| 24 |
"nickname": "Llama 3.1 405B",
|
| 25 |
-
"params":
|
| 26 |
},
|
| 27 |
"meta-llama/Meta-Llama-3.1-8B-Instruct": {
|
| 28 |
"url": "https://huggingface.co/meta-llama/Meta-Llama-3.1-8B-Instruct",
|
| 29 |
"nickname": "Llama 3.1 8B",
|
| 30 |
-
"params":
|
| 31 |
},
|
| 32 |
"microsoft/Phi-3-medium-4k-instruct": {
|
| 33 |
"url": "https://huggingface.co/microsoft/Phi-3-medium-4k-instruct",
|
| 34 |
"nickname": "Phi 3 Medium",
|
| 35 |
-
"params":
|
| 36 |
},
|
| 37 |
"microsoft/Phi-3-mini-4k-instruct": {
|
| 38 |
"url": "https://huggingface.co/microsoft/Phi-3-mini-4k-instruct",
|
| 39 |
"nickname": "Phi 3 Mini",
|
| 40 |
-
"params":
|
| 41 |
},
|
| 42 |
"microsoft/Phi-3-small-8k-instruct": {
|
| 43 |
"url": "https://huggingface.co/microsoft/Phi-3-small-8k-instruct",
|
| 44 |
"nickname": "Phi 3 Small",
|
| 45 |
-
"params":
|
| 46 |
},
|
| 47 |
"mistralai/Mistral-7B-Instruct-v0.3": {
|
| 48 |
"url": "https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.3",
|
| 49 |
"nickname": "Mistral 7B",
|
| 50 |
-
"params":
|
| 51 |
},
|
| 52 |
"mistralai/Mistral-Large-Instruct-2407": {
|
| 53 |
"url": "https://huggingface.co/mistralai/Mistral-Large-Instruct-2407",
|
| 54 |
"nickname": "Mistral Large",
|
| 55 |
-
"params":
|
| 56 |
},
|
| 57 |
"mistralai/Mistral-Nemo-Instruct-2407": {
|
| 58 |
"url": "https://huggingface.co/mistralai/Mistral-Nemo-Instruct-2407",
|
| 59 |
"nickname": "Mistral Nemo",
|
| 60 |
-
"params":
|
| 61 |
},
|
| 62 |
"mistralai/Mixtral-8x22B-Instruct-v0.1": {
|
| 63 |
"url": "https://huggingface.co/mistralai/Mixtral-8x22B-Instruct-v0.1",
|
| 64 |
"nickname": "Mixtral 8x22B",
|
| 65 |
-
"params":
|
| 66 |
},
|
| 67 |
"mistralai/Mixtral-8x7B-Instruct-v0.1": {
|
| 68 |
"url": "https://huggingface.co/mistralai/Mixtral-8x7B-Instruct-v0.1",
|
| 69 |
"nickname": "Mixtral 8x7B",
|
| 70 |
-
"params":
|
| 71 |
}
|
| 72 |
}
|
|
|
|
| 2 |
"google/gemma-2-27b-it": {
|
| 3 |
"url": "https://huggingface.co/google/gemma-2-27b-it",
|
| 4 |
"nickname": "Gemma 2 27B",
|
| 5 |
+
"params": 27
|
| 6 |
},
|
| 7 |
"google/gemma-2-2b-it": {
|
| 8 |
"url": "https://huggingface.co/google/gemma-2-2b-it",
|
| 9 |
"nickname": "Gemma 2 2B",
|
| 10 |
+
"params": 2
|
| 11 |
},
|
| 12 |
"google/gemma-2-9b-it": {
|
| 13 |
"url": "https://huggingface.co/google/gemma-2-9b-it",
|
| 14 |
"nickname": "Gemma 2 9B",
|
| 15 |
+
"params": 9
|
| 16 |
},
|
| 17 |
"meta-llama/Meta-Llama-3.1-70B-Instruct": {
|
| 18 |
"url": "https://huggingface.co/meta-llama/Meta-Llama-3.1-70B-Instruct",
|
| 19 |
"nickname": "Llama 3.1 70B",
|
| 20 |
+
"params": 70
|
| 21 |
},
|
| 22 |
"meta-llama/Meta-Llama-3.1-405B-Instruct": {
|
| 23 |
"url": "https://huggingface.co/meta-llama/Meta-Llama-3.1-405B-Instruct",
|
| 24 |
"nickname": "Llama 3.1 405B",
|
| 25 |
+
"params": 405
|
| 26 |
},
|
| 27 |
"meta-llama/Meta-Llama-3.1-8B-Instruct": {
|
| 28 |
"url": "https://huggingface.co/meta-llama/Meta-Llama-3.1-8B-Instruct",
|
| 29 |
"nickname": "Llama 3.1 8B",
|
| 30 |
+
"params": 8
|
| 31 |
},
|
| 32 |
"microsoft/Phi-3-medium-4k-instruct": {
|
| 33 |
"url": "https://huggingface.co/microsoft/Phi-3-medium-4k-instruct",
|
| 34 |
"nickname": "Phi 3 Medium",
|
| 35 |
+
"params": 14
|
| 36 |
},
|
| 37 |
"microsoft/Phi-3-mini-4k-instruct": {
|
| 38 |
"url": "https://huggingface.co/microsoft/Phi-3-mini-4k-instruct",
|
| 39 |
"nickname": "Phi 3 Mini",
|
| 40 |
+
"params": 4
|
| 41 |
},
|
| 42 |
"microsoft/Phi-3-small-8k-instruct": {
|
| 43 |
"url": "https://huggingface.co/microsoft/Phi-3-small-8k-instruct",
|
| 44 |
"nickname": "Phi 3 Small",
|
| 45 |
+
"params": 7
|
| 46 |
},
|
| 47 |
"mistralai/Mistral-7B-Instruct-v0.3": {
|
| 48 |
"url": "https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.3",
|
| 49 |
"nickname": "Mistral 7B",
|
| 50 |
+
"params": 7
|
| 51 |
},
|
| 52 |
"mistralai/Mistral-Large-Instruct-2407": {
|
| 53 |
"url": "https://huggingface.co/mistralai/Mistral-Large-Instruct-2407",
|
| 54 |
"nickname": "Mistral Large",
|
| 55 |
+
"params": 123
|
| 56 |
},
|
| 57 |
"mistralai/Mistral-Nemo-Instruct-2407": {
|
| 58 |
"url": "https://huggingface.co/mistralai/Mistral-Nemo-Instruct-2407",
|
| 59 |
"nickname": "Mistral Nemo",
|
| 60 |
+
"params": 12
|
| 61 |
},
|
| 62 |
"mistralai/Mixtral-8x22B-Instruct-v0.1": {
|
| 63 |
"url": "https://huggingface.co/mistralai/Mixtral-8x22B-Instruct-v0.1",
|
| 64 |
"nickname": "Mixtral 8x22B",
|
| 65 |
+
"params": 141
|
| 66 |
},
|
| 67 |
"mistralai/Mixtral-8x7B-Instruct-v0.1": {
|
| 68 |
"url": "https://huggingface.co/mistralai/Mixtral-8x7B-Instruct-v0.1",
|
| 69 |
"nickname": "Mixtral 8x7B",
|
| 70 |
+
"params": 47
|
| 71 |
}
|
| 72 |
}
|
data/llm_text_generation/code/models.json
CHANGED
|
@@ -2,46 +2,46 @@
|
|
| 2 |
"bigcode/starcoder2-15b": {
|
| 3 |
"url": "https://huggingface.co/bigcode/starcoder2-15b",
|
| 4 |
"nickname": "Starcoder2 15B",
|
| 5 |
-
"params":
|
| 6 |
},
|
| 7 |
"bigcode/starcoder2-3b": {
|
| 8 |
"url": "https://huggingface.co/bigcode/starcoder2-3b",
|
| 9 |
"nickname": "Starcoder2 3B",
|
| 10 |
-
"params":
|
| 11 |
},
|
| 12 |
"bigcode/starcoder2-7b": {
|
| 13 |
"url": "https://huggingface.co/bigcode/starcoder2-7b",
|
| 14 |
"nickname": "Starcoder2 7B",
|
| 15 |
-
"params":
|
| 16 |
},
|
| 17 |
"codellama/CodeLlama-13b-hf": {
|
| 18 |
"url": "https://huggingface.co/codellama/CodeLlama-13b-hf",
|
| 19 |
"nickname": "CodeLlama 13B",
|
| 20 |
-
"params":
|
| 21 |
},
|
| 22 |
"codellama/CodeLlama-34b-hf": {
|
| 23 |
"url": "https://huggingface.co/codellama/CodeLlama-34b-hf",
|
| 24 |
"nickname": "CodeLlama 34B",
|
| 25 |
-
"params":
|
| 26 |
},
|
| 27 |
"codellama/CodeLlama-70b-hf": {
|
| 28 |
"url": "https://huggingface.co/codellama/CodeLlama-70b-hf",
|
| 29 |
"nickname": "CodeLlama 70B",
|
| 30 |
-
"params":
|
| 31 |
},
|
| 32 |
"codellama/CodeLlama-7b-hf": {
|
| 33 |
"url": "https://huggingface.co/codellama/CodeLlama-7b-hf",
|
| 34 |
"nickname": "CodeLlama 7B",
|
| 35 |
-
"params":
|
| 36 |
},
|
| 37 |
"google/codegemma-1.1-2b": {
|
| 38 |
"url": "https://huggingface.co/google/codegemma-1.1-2b",
|
| 39 |
"nickname": "CodeGemma 2B",
|
| 40 |
-
"params":
|
| 41 |
},
|
| 42 |
"google/codegemma-7b": {
|
| 43 |
"url": "https://huggingface.co/google/codegemma-7b",
|
| 44 |
"nickname": "CodeGemma 7B",
|
| 45 |
-
"params":
|
| 46 |
}
|
| 47 |
}
|
|
|
|
| 2 |
"bigcode/starcoder2-15b": {
|
| 3 |
"url": "https://huggingface.co/bigcode/starcoder2-15b",
|
| 4 |
"nickname": "Starcoder2 15B",
|
| 5 |
+
"params": 15
|
| 6 |
},
|
| 7 |
"bigcode/starcoder2-3b": {
|
| 8 |
"url": "https://huggingface.co/bigcode/starcoder2-3b",
|
| 9 |
"nickname": "Starcoder2 3B",
|
| 10 |
+
"params": 3
|
| 11 |
},
|
| 12 |
"bigcode/starcoder2-7b": {
|
| 13 |
"url": "https://huggingface.co/bigcode/starcoder2-7b",
|
| 14 |
"nickname": "Starcoder2 7B",
|
| 15 |
+
"params": 7
|
| 16 |
},
|
| 17 |
"codellama/CodeLlama-13b-hf": {
|
| 18 |
"url": "https://huggingface.co/codellama/CodeLlama-13b-hf",
|
| 19 |
"nickname": "CodeLlama 13B",
|
| 20 |
+
"params": 13
|
| 21 |
},
|
| 22 |
"codellama/CodeLlama-34b-hf": {
|
| 23 |
"url": "https://huggingface.co/codellama/CodeLlama-34b-hf",
|
| 24 |
"nickname": "CodeLlama 34B",
|
| 25 |
+
"params": 34
|
| 26 |
},
|
| 27 |
"codellama/CodeLlama-70b-hf": {
|
| 28 |
"url": "https://huggingface.co/codellama/CodeLlama-70b-hf",
|
| 29 |
"nickname": "CodeLlama 70B",
|
| 30 |
+
"params": 70
|
| 31 |
},
|
| 32 |
"codellama/CodeLlama-7b-hf": {
|
| 33 |
"url": "https://huggingface.co/codellama/CodeLlama-7b-hf",
|
| 34 |
"nickname": "CodeLlama 7B",
|
| 35 |
+
"params": 7
|
| 36 |
},
|
| 37 |
"google/codegemma-1.1-2b": {
|
| 38 |
"url": "https://huggingface.co/google/codegemma-1.1-2b",
|
| 39 |
"nickname": "CodeGemma 2B",
|
| 40 |
+
"params": 2
|
| 41 |
},
|
| 42 |
"google/codegemma-7b": {
|
| 43 |
"url": "https://huggingface.co/google/codegemma-7b",
|
| 44 |
"nickname": "CodeGemma 7B",
|
| 45 |
+
"params": 7
|
| 46 |
}
|
| 47 |
}
|
data/mllm_text_generation/chat/models.json
CHANGED
|
@@ -2,31 +2,31 @@
|
|
| 2 |
"facebook/chameleon-30b": {
|
| 3 |
"url": "https://huggingface.co/facebook/chameleon-30b",
|
| 4 |
"nickname": "Chameleon 30B",
|
| 5 |
-
"params":
|
| 6 |
},
|
| 7 |
"facebook/chameleon-7b": {
|
| 8 |
"url": "https://huggingface.co/facebook/chameleon-7b",
|
| 9 |
"nickname": "Chameleon 7B",
|
| 10 |
-
"params":
|
| 11 |
},
|
| 12 |
"llava-hf/llama3-llava-next-8b-hf": {
|
| 13 |
"url": "https://huggingface.co/llava-hf/llama3-llava-next-8b-hf",
|
| 14 |
"nickname": "LLaVA NeXT 8B",
|
| 15 |
-
"params":
|
| 16 |
},
|
| 17 |
"llava-hf/llava-1.5-13b-hf": {
|
| 18 |
"url": "https://huggingface.co/llava-hf/llava-1.5-13b-hf",
|
| 19 |
"nickname": "LLaVA 1.5 13B",
|
| 20 |
-
"params":
|
| 21 |
},
|
| 22 |
"llava-hf/llava-1.5-7b-hf": {
|
| 23 |
"url": "https://huggingface.co/llava-hf/llava-1.5-7b-hf",
|
| 24 |
"nickname": "LLaVA 1.5 7B",
|
| 25 |
-
"params":
|
| 26 |
},
|
| 27 |
"microsoft/Phi-3-vision-128k-instruct": {
|
| 28 |
"url": "https://huggingface.co/microsoft/Phi-3-vision-128k-instruct",
|
| 29 |
"nickname": "Phi 3 Vision",
|
| 30 |
-
"params":
|
| 31 |
}
|
| 32 |
}
|
|
|
|
| 2 |
"facebook/chameleon-30b": {
|
| 3 |
"url": "https://huggingface.co/facebook/chameleon-30b",
|
| 4 |
"nickname": "Chameleon 30B",
|
| 5 |
+
"params": 34
|
| 6 |
},
|
| 7 |
"facebook/chameleon-7b": {
|
| 8 |
"url": "https://huggingface.co/facebook/chameleon-7b",
|
| 9 |
"nickname": "Chameleon 7B",
|
| 10 |
+
"params": 7
|
| 11 |
},
|
| 12 |
"llava-hf/llama3-llava-next-8b-hf": {
|
| 13 |
"url": "https://huggingface.co/llava-hf/llama3-llava-next-8b-hf",
|
| 14 |
"nickname": "LLaVA NeXT 8B",
|
| 15 |
+
"params": 8
|
| 16 |
},
|
| 17 |
"llava-hf/llava-1.5-13b-hf": {
|
| 18 |
"url": "https://huggingface.co/llava-hf/llava-1.5-13b-hf",
|
| 19 |
"nickname": "LLaVA 1.5 13B",
|
| 20 |
+
"params": 13
|
| 21 |
},
|
| 22 |
"llava-hf/llava-1.5-7b-hf": {
|
| 23 |
"url": "https://huggingface.co/llava-hf/llava-1.5-7b-hf",
|
| 24 |
"nickname": "LLaVA 1.5 7B",
|
| 25 |
+
"params": 7
|
| 26 |
},
|
| 27 |
"microsoft/Phi-3-vision-128k-instruct": {
|
| 28 |
"url": "https://huggingface.co/microsoft/Phi-3-vision-128k-instruct",
|
| 29 |
"nickname": "Phi 3 Vision",
|
| 30 |
+
"params": 4
|
| 31 |
}
|
| 32 |
}
|