File size: 5,933 Bytes
c3fc836
 
 
 
 
 
 
 
 
 
 
36784c4
 
c3fc836
 
 
 
 
 
 
 
 
 
 
 
 
36784c4
 
 
 
 
 
 
 
 
 
 
 
 
 
dff0f00
36784c4
 
 
 
bba96cd
3533d0c
0bb6b1b
 
 
 
bba96cd
36784c4
3533d0c
36784c4
bba96cd
 
 
 
3533d0c
36784c4
bba96cd
60c6432
36784c4
dff0f00
36784c4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dff0f00
 
 
36784c4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c3fc836
36784c4
 
 
 
 
 
 
 
 
dff0f00
 
 
 
36784c4
 
 
 
 
 
dff0f00
36784c4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c3fc836
 
36784c4
 
 
 
c3fc836
36784c4
 
 
 
759f90d
36784c4
 
 
 
 
 
 
dff0f00
 
 
 
 
089e758
9ca38ff
f7c6c35
089e758
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
import * as webllm from "@mlc-ai/web-llm";
import rehypeStringify from "rehype-stringify";
import remarkFrontmatter from "remark-frontmatter";
import remarkGfm from "remark-gfm";
import RemarkBreaks from "remark-breaks";
import remarkParse from "remark-parse";
import remarkRehype from "remark-rehype";
import RehypeKatex from "rehype-katex";
import { unified } from "unified";
import remarkMath from "remark-math";
import rehypeHighlight from "rehype-highlight";

/*************** WebLLM logic ***************/
const messageFormatter = unified()
  .use(remarkParse)
  .use(remarkFrontmatter)
  .use(remarkMath)
  .use(remarkGfm)
  .use(RemarkBreaks)
  .use(remarkRehype)
  .use(rehypeStringify)
  .use(RehypeKatex)
  .use(rehypeHighlight, {
    detect: true,
    ignoreMissing: true,
  });
const messages = [
  {
    content: "You are a helpful AI agent helping users.",
    role: "system",
  },
];

// Callback function for initializing progress
function updateEngineInitProgressCallback(report) {
  console.log("initialize", report.progress);
  document.getElementById("download-status").textContent = report.text;
}

// Create engine instance
let modelLoaded = false;
const engine = new webllm.MLCEngine();
engine.setInitProgressCallback(updateEngineInitProgressCallback);

async function initializeWebLLMEngine() {
  const quantization = document.getElementById("quantization").value;
  const context_window_size = parseInt(document.getElementById("context").value);
  const temperature = parseFloat(document.getElementById("temperature").value);
  const top_p = parseFloat(document.getElementById("top_p").value);
  const presence_penalty = parseFloat(document.getElementById("presence_penalty").value);
  const frequency_penalty = parseFloat(document.getElementById("frequency_penalty").value);

  document.getElementById("download-status").classList.remove("hidden");
  const selectedModel = `Phi-3.5-mini-instruct-${quantization}_1-MLC`;
  const config = {
    temperature,
    top_p,
    frequency_penalty,
    presence_penalty,
    context_window_size,
  };
  console.log(`Loading Model: ${selectedModel}`);
  console.log(`Config: ${JSON.stringify(config)}`);
  await engine.reload(selectedModel, config);
  modelLoaded = true;
}

async function streamingGenerating(messages, onUpdate, onFinish, onError) {
  try {
    let curMessage = "";
    let usage;
    const completion = await engine.chat.completions.create({
      stream: true,
      messages,
      stream_options: { include_usage: true },
    });
    for await (const chunk of completion) {
      const curDelta = chunk.choices[0]?.delta.content;
      if (curDelta) {
        curMessage += curDelta;
      }
      if (chunk.usage) {
        usage = chunk.usage;
      }
      onUpdate(curMessage);
    }
    const finalMessage = await engine.getMessage();
    onFinish(finalMessage, usage);
  } catch (err) {
    onError(err);
  }
}

/*************** UI logic ***************/
function onMessageSend() {
  if (!modelLoaded) {
    return;
  }
  const input = document.getElementById("user-input").value.trim();
  const message = {
    content: input,
    role: "user",
  };
  if (input.length === 0) {
    return;
  }
  document.getElementById("send").disabled = true;

  messages.push(message);
  appendMessage(message);

  document.getElementById("user-input").value = "";
  document
    .getElementById("user-input")
    .setAttribute("placeholder", "Generating...");

  const aiMessage = {
    content: "typing...",
    role: "assistant",
  };
  appendMessage(aiMessage);

  const onFinishGenerating = async (finalMessage, usage) => {
    updateLastMessage(finalMessage);
    document.getElementById("send").disabled = false;
    const usageText =
      `prompt_tokens: ${usage.prompt_tokens}, ` +
      `completion_tokens: ${usage.completion_tokens}, ` +
      `prefill: ${usage.extra.prefill_tokens_per_s.toFixed(4)} tokens/sec, ` +
      `decoding: ${usage.extra.decode_tokens_per_s.toFixed(4)} tokens/sec`;
    document.getElementById("chat-stats").classList.remove("hidden");
    document.getElementById("chat-stats").textContent = usageText;

    document
      .getElementById("user-input")
      .setAttribute("placeholder", "Type a message...");
  };

  streamingGenerating(
    messages,
    updateLastMessage,
    onFinishGenerating,
    console.error
  );
}

function appendMessage(message) {
  const chatBox = document.getElementById("chat-box");
  const container = document.createElement("div");
  container.classList.add("message-container");
  const newMessage = document.createElement("div");
  newMessage.classList.add("message");
  newMessage.textContent = message.content;

  if (message.role === "user") {
    container.classList.add("user");
  } else {
    container.classList.add("assistant");
  }

  container.appendChild(newMessage);
  chatBox.appendChild(container);
  chatBox.scrollTop = chatBox.scrollHeight; // Scroll to the latest message
}

async function updateLastMessage(content) {
  const formattedMessage = await messageFormatter.process(content);
  const messageDoms = document
    .getElementById("chat-box")
    .querySelectorAll(".message");
  const lastMessageDom = messageDoms[messageDoms.length - 1];
  lastMessageDom.innerHTML = formattedMessage;
}

/*************** UI binding ***************/
document.getElementById("download").addEventListener("click", function () {
  document.getElementById("send").disabled = true;
  initializeWebLLMEngine().then(() => {
    document.getElementById("send").disabled = false;
  });
});
document.getElementById("send").addEventListener("click", function () {
  onMessageSend();
});
document.getElementById("user-input").addEventListener("keydown", (event) => {
  if (event.key === "Enter") {
    onMessageSend();
  }
});

window.onload = function () {
  document.getElementById("download").textContent = "Download";
  document.getElementById("download").disabled = false;
}