Spaces:
Running
Running
Upload app.py with huggingface_hub
Browse files
app.py
ADDED
@@ -0,0 +1,196 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Hugging Face Space App for Free H200 Training
|
3 |
+
This app runs nano-coder training on HF's free H200 GPU (4 minutes daily)
|
4 |
+
"""
|
5 |
+
|
6 |
+
import os
|
7 |
+
import subprocess
|
8 |
+
import time
|
9 |
+
import gradio as gr
|
10 |
+
from datetime import datetime, timedelta
|
11 |
+
|
12 |
+
# Configuration
|
13 |
+
MAX_TRAINING_TIME = 3.5 * 60 # 3.5 minutes to be safe
|
14 |
+
TRAINING_SCRIPT = "hf_free_training.py"
|
15 |
+
DATA_PREP_SCRIPT = "prepare_code_dataset.py"
|
16 |
+
|
17 |
+
def check_daily_limit():
|
18 |
+
"""Check if we've used today's free H200 time."""
|
19 |
+
today = datetime.now().date()
|
20 |
+
limit_file = f"daily_limit_{today}.txt"
|
21 |
+
|
22 |
+
if os.path.exists(limit_file):
|
23 |
+
with open(limit_file, 'r') as f:
|
24 |
+
last_run = f.read().strip()
|
25 |
+
if last_run == str(today):
|
26 |
+
return False, "Daily H200 limit reached. Try again tomorrow!"
|
27 |
+
|
28 |
+
return True, "Ready to train!"
|
29 |
+
|
30 |
+
def mark_daily_usage():
|
31 |
+
"""Mark that we've used today's free time."""
|
32 |
+
today = datetime.now().date()
|
33 |
+
limit_file = f"daily_limit_{today}.txt"
|
34 |
+
|
35 |
+
with open(limit_file, 'w') as f:
|
36 |
+
f.write(str(today))
|
37 |
+
|
38 |
+
def run_training():
|
39 |
+
"""Run the free H200 training."""
|
40 |
+
|
41 |
+
# Check daily limit
|
42 |
+
can_run, message = check_daily_limit()
|
43 |
+
if not can_run:
|
44 |
+
return message
|
45 |
+
|
46 |
+
try:
|
47 |
+
# Mark usage
|
48 |
+
mark_daily_usage()
|
49 |
+
|
50 |
+
# Prepare dataset if not already done
|
51 |
+
if not os.path.exists("data/python-codes-25k/train.bin"):
|
52 |
+
print("Preparing dataset...")
|
53 |
+
subprocess.run(["python", DATA_PREP_SCRIPT], check=True)
|
54 |
+
|
55 |
+
# Run training
|
56 |
+
print("Starting free H200 training...")
|
57 |
+
start_time = time.time()
|
58 |
+
|
59 |
+
# Run training with timeout
|
60 |
+
process = subprocess.Popen(
|
61 |
+
["python", TRAINING_SCRIPT],
|
62 |
+
stdout=subprocess.PIPE,
|
63 |
+
stderr=subprocess.STDOUT,
|
64 |
+
universal_newlines=True
|
65 |
+
)
|
66 |
+
|
67 |
+
output_lines = []
|
68 |
+
while True:
|
69 |
+
elapsed = time.time() - start_time
|
70 |
+
if elapsed > MAX_TRAINING_TIME:
|
71 |
+
process.terminate()
|
72 |
+
output_lines.append(f"\nβ° Time limit reached ({elapsed/60:.1f} minutes)")
|
73 |
+
break
|
74 |
+
|
75 |
+
line = process.stdout.readline()
|
76 |
+
if not line and process.poll() is not None:
|
77 |
+
break
|
78 |
+
|
79 |
+
if line:
|
80 |
+
output_lines.append(line.strip())
|
81 |
+
print(line.strip())
|
82 |
+
|
83 |
+
# Wait for process to finish
|
84 |
+
process.wait()
|
85 |
+
|
86 |
+
# Check if training completed successfully
|
87 |
+
if process.returncode == 0:
|
88 |
+
result = "β
Training completed successfully!\n\n" + "\n".join(output_lines[-20:]) # Last 20 lines
|
89 |
+
else:
|
90 |
+
result = "β Training failed or was interrupted.\n\n" + "\n".join(output_lines[-20:])
|
91 |
+
|
92 |
+
return result
|
93 |
+
|
94 |
+
except Exception as e:
|
95 |
+
return f"β Error during training: {str(e)}"
|
96 |
+
|
97 |
+
def check_model_status():
|
98 |
+
"""Check if trained model exists."""
|
99 |
+
model_path = "out-nano-coder-free/ckpt.pt"
|
100 |
+
if os.path.exists(model_path):
|
101 |
+
# Get file size
|
102 |
+
size = os.path.getsize(model_path) / (1024 * 1024) # MB
|
103 |
+
return f"β
Model found! Size: {size:.1f} MB"
|
104 |
+
else:
|
105 |
+
return "β No trained model found. Run training first."
|
106 |
+
|
107 |
+
def generate_sample_code(prompt, max_tokens=100, temperature=0.8):
|
108 |
+
"""Generate code using the trained model."""
|
109 |
+
if not os.path.exists("out-nano-coder-free/ckpt.pt"):
|
110 |
+
return "β No trained model found. Please run training first."
|
111 |
+
|
112 |
+
try:
|
113 |
+
# Import and run sampling
|
114 |
+
from sample_nano_coder import load_model, load_vocab, generate_code
|
115 |
+
|
116 |
+
model, checkpoint = load_model()
|
117 |
+
stoi, itos = load_vocab()
|
118 |
+
|
119 |
+
# Generate code
|
120 |
+
completion = generate_code(model, stoi, itos, prompt, max_tokens, temperature, 200)
|
121 |
+
|
122 |
+
return f"Generated code:\n\n{completion}"
|
123 |
+
|
124 |
+
except Exception as e:
|
125 |
+
return f"β Error generating code: {str(e)}"
|
126 |
+
|
127 |
+
# Create Gradio interface
|
128 |
+
with gr.Blocks(title="Nano-Coder Free H200 Training") as demo:
|
129 |
+
gr.Markdown("# π Nano-Coder Free H200 Training")
|
130 |
+
gr.Markdown("Train a nanoGPT model for Python code generation using Hugging Face's free H200 GPU (4 minutes daily)")
|
131 |
+
|
132 |
+
with gr.Row():
|
133 |
+
with gr.Column():
|
134 |
+
gr.Markdown("### π― Training Control")
|
135 |
+
train_button = gr.Button("π Start Free H200 Training", variant="primary")
|
136 |
+
status_text = gr.Textbox(label="Training Status", lines=10, interactive=False)
|
137 |
+
|
138 |
+
with gr.Column():
|
139 |
+
gr.Markdown("### π Model Status")
|
140 |
+
model_status_button = gr.Button("π Check Model Status")
|
141 |
+
model_status_text = gr.Textbox(label="Model Status", lines=2, interactive=False)
|
142 |
+
|
143 |
+
with gr.Row():
|
144 |
+
with gr.Column():
|
145 |
+
gr.Markdown("### π¨ Code Generation")
|
146 |
+
code_prompt = gr.Textbox(
|
147 |
+
label="Code Prompt",
|
148 |
+
placeholder="def fibonacci(n):\n ",
|
149 |
+
lines=3
|
150 |
+
)
|
151 |
+
with gr.Row():
|
152 |
+
max_tokens = gr.Slider(50, 500, 100, label="Max Tokens")
|
153 |
+
temperature = gr.Slider(0.1, 2.0, 0.8, label="Temperature")
|
154 |
+
generate_button = gr.Button("β¨ Generate Code")
|
155 |
+
generated_code = gr.Textbox(label="Generated Code", lines=10, interactive=False)
|
156 |
+
|
157 |
+
# Event handlers
|
158 |
+
train_button.click(
|
159 |
+
fn=run_training,
|
160 |
+
outputs=status_text
|
161 |
+
)
|
162 |
+
|
163 |
+
model_status_button.click(
|
164 |
+
fn=check_model_status,
|
165 |
+
outputs=model_status_text
|
166 |
+
)
|
167 |
+
|
168 |
+
generate_button.click(
|
169 |
+
fn=generate_sample_code,
|
170 |
+
inputs=[code_prompt, max_tokens, temperature],
|
171 |
+
outputs=generated_code
|
172 |
+
)
|
173 |
+
|
174 |
+
gr.Markdown("""
|
175 |
+
### π Instructions
|
176 |
+
|
177 |
+
1. **Daily Limit**: You get 4 minutes of free H200 GPU time per day
|
178 |
+
2. **Training**: Click "Start Free H200 Training" to begin
|
179 |
+
3. **Model**: Check model status after training
|
180 |
+
4. **Generation**: Use the trained model to generate Python code
|
181 |
+
|
182 |
+
### βοΈ Model Configuration (Free Tier)
|
183 |
+
- **Layers**: 6 (reduced from 12)
|
184 |
+
- **Heads**: 6 (reduced from 12)
|
185 |
+
- **Embedding**: 384 (reduced from 768)
|
186 |
+
- **Context**: 512 tokens
|
187 |
+
- **Parameters**: ~15M (vs 124M full model)
|
188 |
+
|
189 |
+
### π‘ Tips
|
190 |
+
- Training automatically stops at 3.5 minutes to be safe
|
191 |
+
- Model checkpoints are saved to HF Hub
|
192 |
+
- Use shorter prompts for better results
|
193 |
+
""")
|
194 |
+
|
195 |
+
if __name__ == "__main__":
|
196 |
+
demo.launch()
|