mlopez6132 commited on
Commit
f59de10
·
verified ·
1 Parent(s): cc8cb1e

Upload prepare_code_dataset.py with huggingface_hub

Browse files
Files changed (1) hide show
  1. prepare_code_dataset.py +122 -0
prepare_code_dataset.py ADDED
@@ -0,0 +1,122 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ Data preparation script for training nanoGPT on the flytech/python-codes-25k dataset.
3
+ This script downloads the dataset, tokenizes it, and creates the binary files needed for training.
4
+ """
5
+
6
+ import os
7
+ import pickle
8
+ import numpy as np
9
+ from datasets import load_dataset
10
+ from tqdm import tqdm
11
+
12
+ def download_and_prepare_code_dataset():
13
+ """Download and prepare the flytech/python-codes-25k dataset for nanoGPT training."""
14
+
15
+ print("Loading flytech/python-codes-25k dataset...")
16
+ dataset = load_dataset("flytech/python-codes-25k")
17
+
18
+ print(f"Dataset structure: {dataset}")
19
+ print(f"Available splits: {list(dataset.keys())}")
20
+ print(f"Train split size: {len(dataset['train'])}")
21
+
22
+ # Debug: Check the first few examples to understand the structure
23
+ print("\nFirst example structure:")
24
+ first_example = dataset['train'][0]
25
+ for key, value in first_example.items():
26
+ print(f" {key}: {repr(value[:200])}...") # Show first 200 chars
27
+
28
+ # Create data directory
29
+ data_dir = os.path.join('data', 'python-codes-25k')
30
+ os.makedirs(data_dir, exist_ok=True)
31
+
32
+ # Extract code content from the dataset
33
+ print("Extracting code content...")
34
+ train_texts = []
35
+ test_texts = []
36
+
37
+ # Process training data
38
+ for item in tqdm(dataset['train'], desc="Processing train split"):
39
+ # Try different possible field names for code content
40
+ code = item.get('text', '') or item.get('output', '') or item.get('code', '')
41
+ if code and isinstance(code, str) and len(code.strip()) > 0:
42
+ train_texts.append(code)
43
+
44
+ # Split training data into train and validation sets (90/10 split)
45
+ print("Splitting data into train and validation sets...")
46
+ total_samples = len(train_texts)
47
+ split_idx = int(0.9 * total_samples)
48
+
49
+ train_texts_final = train_texts[:split_idx]
50
+ test_texts = train_texts[split_idx:] # Use last 10% as validation
51
+
52
+ print(f"Final train samples: {len(train_texts_final)}")
53
+ print(f"Validation samples: {len(test_texts)}")
54
+
55
+ print(f"Extracted {len(train_texts)} total samples")
56
+
57
+ # Combine all texts for vocabulary building
58
+ all_text = '\n'.join(train_texts_final + test_texts)
59
+ print(f"Total characters: {len(all_text):,}")
60
+
61
+ # Create vocabulary from the text
62
+ print("Creating vocabulary...")
63
+ chars = sorted(list(set(all_text)))
64
+ vocab_size = len(chars)
65
+ print(f"Vocabulary size: {vocab_size}")
66
+
67
+ # Create character to integer mapping
68
+ stoi = {ch: i for i, ch in enumerate(chars)}
69
+ itos = {i: ch for i, ch in enumerate(chars)}
70
+
71
+ # Save vocabulary metadata
72
+ meta = {
73
+ 'vocab_size': vocab_size,
74
+ 'itos': itos,
75
+ 'stoi': stoi,
76
+ }
77
+ with open(os.path.join(data_dir, 'meta.pkl'), 'wb') as f:
78
+ pickle.dump(meta, f)
79
+ print(f"Saved vocabulary to {os.path.join(data_dir, 'meta.pkl')}")
80
+
81
+ # Tokenize and save training data
82
+ print("Tokenizing training data...")
83
+ train_ids = []
84
+ for text in tqdm(train_texts_final, desc="Tokenizing train"):
85
+ ids = [stoi[c] for c in text]
86
+ train_ids.extend(ids)
87
+
88
+ # Tokenize and save test data
89
+ print("Tokenizing test data...")
90
+ test_ids = []
91
+ for text in tqdm(test_texts, desc="Tokenizing test"):
92
+ ids = [stoi[c] for c in text]
93
+ test_ids.extend(ids)
94
+
95
+ # Save as binary files
96
+ train_ids = np.array(train_ids, dtype=np.uint16)
97
+ test_ids = np.array(test_ids, dtype=np.uint16)
98
+
99
+ train_path = os.path.join(data_dir, 'train.bin')
100
+ test_path = os.path.join(data_dir, 'val.bin') # nanoGPT expects 'val.bin'
101
+
102
+ train_ids.tofile(train_path)
103
+ test_ids.tofile(test_path)
104
+
105
+ print(f"Saved training data to {train_path} ({len(train_ids):,} tokens)")
106
+ print(f"Saved validation data to {test_path} ({len(test_ids):,} tokens)")
107
+
108
+ # Print some statistics
109
+ print(f"\nDataset statistics:")
110
+ print(f"Vocabulary size: {vocab_size}")
111
+ print(f"Training tokens: {len(train_ids):,}")
112
+ print(f"Validation tokens: {len(test_ids):,}")
113
+ print(f"Total tokens: {len(train_ids) + len(test_ids):,}")
114
+
115
+ # Show some example characters
116
+ print(f"\nFirst 100 characters in vocabulary:")
117
+ print(''.join(chars[:100]))
118
+
119
+ return data_dir
120
+
121
+ if __name__ == '__main__':
122
+ download_and_prepare_code_dataset()