""" Data preparation script for training nanoGPT on the flytech/python-codes-25k dataset. This script downloads the dataset, tokenizes it, and creates the binary files needed for training. """ import os import pickle import numpy as np from datasets import load_dataset from tqdm import tqdm def download_and_prepare_code_dataset(): """Download and prepare the flytech/python-codes-25k dataset for nanoGPT training.""" print("Loading flytech/python-codes-25k dataset...") dataset = load_dataset("flytech/python-codes-25k") print(f"Dataset structure: {dataset}") print(f"Available splits: {list(dataset.keys())}") print(f"Train split size: {len(dataset['train'])}") # Debug: Check the first few examples to understand the structure print("\nFirst example structure:") first_example = dataset['train'][0] for key, value in first_example.items(): print(f" {key}: {repr(value[:200])}...") # Show first 200 chars # Create data directory data_dir = os.path.join('data', 'python-codes-25k') os.makedirs(data_dir, exist_ok=True) # Extract code content from the dataset print("Extracting code content...") train_texts = [] test_texts = [] # Process training data for item in tqdm(dataset['train'], desc="Processing train split"): # Try different possible field names for code content code = item.get('text', '') or item.get('output', '') or item.get('code', '') if code and isinstance(code, str) and len(code.strip()) > 0: train_texts.append(code) # Split training data into train and validation sets (90/10 split) print("Splitting data into train and validation sets...") total_samples = len(train_texts) split_idx = int(0.9 * total_samples) train_texts_final = train_texts[:split_idx] test_texts = train_texts[split_idx:] # Use last 10% as validation print(f"Final train samples: {len(train_texts_final)}") print(f"Validation samples: {len(test_texts)}") print(f"Extracted {len(train_texts)} total samples") # Combine all texts for vocabulary building all_text = '\n'.join(train_texts_final + test_texts) print(f"Total characters: {len(all_text):,}") # Create vocabulary from the text print("Creating vocabulary...") chars = sorted(list(set(all_text))) vocab_size = len(chars) print(f"Vocabulary size: {vocab_size}") # Create character to integer mapping stoi = {ch: i for i, ch in enumerate(chars)} itos = {i: ch for i, ch in enumerate(chars)} # Save vocabulary metadata meta = { 'vocab_size': vocab_size, 'itos': itos, 'stoi': stoi, } with open(os.path.join(data_dir, 'meta.pkl'), 'wb') as f: pickle.dump(meta, f) print(f"Saved vocabulary to {os.path.join(data_dir, 'meta.pkl')}") # Tokenize and save training data print("Tokenizing training data...") train_ids = [] for text in tqdm(train_texts_final, desc="Tokenizing train"): ids = [stoi[c] for c in text] train_ids.extend(ids) # Tokenize and save test data print("Tokenizing test data...") test_ids = [] for text in tqdm(test_texts, desc="Tokenizing test"): ids = [stoi[c] for c in text] test_ids.extend(ids) # Save as binary files train_ids = np.array(train_ids, dtype=np.uint16) test_ids = np.array(test_ids, dtype=np.uint16) train_path = os.path.join(data_dir, 'train.bin') test_path = os.path.join(data_dir, 'val.bin') # nanoGPT expects 'val.bin' train_ids.tofile(train_path) test_ids.tofile(test_path) print(f"Saved training data to {train_path} ({len(train_ids):,} tokens)") print(f"Saved validation data to {test_path} ({len(test_ids):,} tokens)") # Print some statistics print(f"\nDataset statistics:") print(f"Vocabulary size: {vocab_size}") print(f"Training tokens: {len(train_ids):,}") print(f"Validation tokens: {len(test_ids):,}") print(f"Total tokens: {len(train_ids) + len(test_ids):,}") # Show some example characters print(f"\nFirst 100 characters in vocabulary:") print(''.join(chars[:100])) return data_dir if __name__ == '__main__': download_and_prepare_code_dataset()