Spaces:
Running
Running
Update zeroshot.py
Browse files- zeroshot.py +4 -11
zeroshot.py
CHANGED
|
@@ -151,7 +151,7 @@ def process(
|
|
| 151 |
device = torch.device("mps")
|
| 152 |
else:
|
| 153 |
device = torch.device("cpu")
|
| 154 |
-
device = torch.device("cpu")
|
| 155 |
model.to(device)
|
| 156 |
inputs = inputs.to(device)
|
| 157 |
yield transcription, logs.add(f"Using device: {device}")
|
|
@@ -176,9 +176,7 @@ def process(
|
|
| 176 |
except Exception as e:
|
| 177 |
yield f"ERROR: Creating lexicon failed '{str(e)}'", logs.text
|
| 178 |
return
|
| 179 |
-
|
| 180 |
-
# if len(v) < 5:
|
| 181 |
-
# print(k, v)
|
| 182 |
yield transcription, logs.add(f"Leixcon size: {len(lexicon)}")
|
| 183 |
|
| 184 |
# Input could be sentences OR list of words. Check if atleast one word has a count > 1 to diffentiate
|
|
@@ -200,11 +198,6 @@ def process(
|
|
| 200 |
# HACK: generate a bigram LM from unigram LM and a dummy bigram to trick it
|
| 201 |
maybe_generate_pseudo_bigram_arpa(lm_path)
|
| 202 |
|
| 203 |
-
# for k, v in lexicon.items():
|
| 204 |
-
# if len(v) < 5:
|
| 205 |
-
# print(k, v)
|
| 206 |
-
|
| 207 |
-
# print(lexicon["the"], lexicon["\"(t)he"])
|
| 208 |
with tempfile.NamedTemporaryFile() as lexicon_file:
|
| 209 |
if lm_path is not None and not lm_path.strip():
|
| 210 |
lm_path = None
|
|
@@ -247,8 +240,8 @@ def process(
|
|
| 247 |
yield transcription, logs.add(f"[DONE]")
|
| 248 |
|
| 249 |
|
| 250 |
-
for i in process("upload/english/english.mp3", "upload/english/c4_5k_sentences.txt"):
|
| 251 |
-
|
| 252 |
|
| 253 |
|
| 254 |
# for i in process("upload/ligurian/ligurian_1.mp3", "upload/ligurian/zenamt_5k_sentences.txt"):
|
|
|
|
| 151 |
device = torch.device("mps")
|
| 152 |
else:
|
| 153 |
device = torch.device("cpu")
|
| 154 |
+
#device = torch.device("cpu")
|
| 155 |
model.to(device)
|
| 156 |
inputs = inputs.to(device)
|
| 157 |
yield transcription, logs.add(f"Using device: {device}")
|
|
|
|
| 176 |
except Exception as e:
|
| 177 |
yield f"ERROR: Creating lexicon failed '{str(e)}'", logs.text
|
| 178 |
return
|
| 179 |
+
|
|
|
|
|
|
|
| 180 |
yield transcription, logs.add(f"Leixcon size: {len(lexicon)}")
|
| 181 |
|
| 182 |
# Input could be sentences OR list of words. Check if atleast one word has a count > 1 to diffentiate
|
|
|
|
| 198 |
# HACK: generate a bigram LM from unigram LM and a dummy bigram to trick it
|
| 199 |
maybe_generate_pseudo_bigram_arpa(lm_path)
|
| 200 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 201 |
with tempfile.NamedTemporaryFile() as lexicon_file:
|
| 202 |
if lm_path is not None and not lm_path.strip():
|
| 203 |
lm_path = None
|
|
|
|
| 240 |
yield transcription, logs.add(f"[DONE]")
|
| 241 |
|
| 242 |
|
| 243 |
+
# for i in process("upload/english/english.mp3", "upload/english/c4_5k_sentences.txt"):
|
| 244 |
+
# print(i)
|
| 245 |
|
| 246 |
|
| 247 |
# for i in process("upload/ligurian/ligurian_1.mp3", "upload/ligurian/zenamt_5k_sentences.txt"):
|