Spaces:
Running
Running
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,86 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
from sklearn.decomposition import PCA
|
3 |
+
import gensim.downloader as api
|
4 |
+
import gradio as gr
|
5 |
+
import plotly.graph_objects as go
|
6 |
+
|
7 |
+
# Load the Word2Vec model
|
8 |
+
model = api.load("word2vec-google-news-300")
|
9 |
+
|
10 |
+
|
11 |
+
def gensim_analogy(model, word1, word2, word3):
|
12 |
+
try:
|
13 |
+
result = model.most_similar(positive=[word2, word3], negative=[word1], topn=1)
|
14 |
+
return result[0][0] # Return the word
|
15 |
+
except KeyError as e:
|
16 |
+
return str(e)
|
17 |
+
|
18 |
+
|
19 |
+
def plot_words_plotly(model, words):
|
20 |
+
vectors = np.array([model[word] for word in words if word in model.key_to_index])
|
21 |
+
|
22 |
+
# Reduce dimensions to 2D for plotting
|
23 |
+
pca = PCA(n_components=2)
|
24 |
+
vectors_2d = pca.fit_transform(vectors)
|
25 |
+
|
26 |
+
# Create a scatter plot
|
27 |
+
fig = go.Figure()
|
28 |
+
|
29 |
+
# Add scatter points for each word vector
|
30 |
+
for word, vec in zip(words, vectors_2d):
|
31 |
+
fig.add_trace(go.Scatter(x=[vec[0]], y=[vec[1]],
|
32 |
+
text=[word], mode='markers+text',
|
33 |
+
textposition="bottom center",
|
34 |
+
name=word))
|
35 |
+
|
36 |
+
fig.update_layout(title="Word Vectors Visualization",
|
37 |
+
xaxis_title="PCA 1",
|
38 |
+
yaxis_title="PCA 2",
|
39 |
+
showlegend=True)
|
40 |
+
|
41 |
+
return fig
|
42 |
+
|
43 |
+
|
44 |
+
def gradio_interface(choice, custom_input=None):
|
45 |
+
if choice == "Custom":
|
46 |
+
if not custom_input or len(custom_input.split(", ")) != 3:
|
47 |
+
return "Invalid input. Please enter exactly three words, separated by commas.", None, {
|
48 |
+
"error": "Invalid input"}
|
49 |
+
words = custom_input.split(", ")
|
50 |
+
else:
|
51 |
+
words = choice.split(", ")
|
52 |
+
|
53 |
+
word1, word2, word3 = words
|
54 |
+
word4 = gensim_analogy(model, word1, word2, word3)
|
55 |
+
plot_fig = plot_words_plotly(model, [word1, word2, word3, word4])
|
56 |
+
|
57 |
+
if word4 in model.key_to_index:
|
58 |
+
vector = model[word4]
|
59 |
+
vector_display = {word4: [round(num, 2) for num in vector.tolist()]}
|
60 |
+
else:
|
61 |
+
vector_display = {"error": "Vector not available for the resulting word"}
|
62 |
+
|
63 |
+
return word4, plot_fig, vector_display
|
64 |
+
|
65 |
+
|
66 |
+
choices = [
|
67 |
+
"man, king, woman",
|
68 |
+
"Paris, France, London",
|
69 |
+
"strong, stronger, weak",
|
70 |
+
"pork, pig, beef",
|
71 |
+
"Custom"
|
72 |
+
]
|
73 |
+
|
74 |
+
iface = gr.Interface(
|
75 |
+
fn=gradio_interface,
|
76 |
+
inputs=[
|
77 |
+
gr.Dropdown(choices=choices, label="Choose predefined words or enter custom words"),
|
78 |
+
gr.Textbox(label="Custom words (comma-separated, required for custom choice; use only if 'Custom' is selected)",
|
79 |
+
placeholder="Enter 3 words separated by commas")
|
80 |
+
],
|
81 |
+
outputs=["text", "plot", "json"],
|
82 |
+
title="Word Analogy and Vector Visualization with Plotly",
|
83 |
+
description="Select a predefined triplet of words or choose 'Custom' and enter your own (comma-separated) to find a fourth word by analogy, and see their vectors plotted with Plotly."
|
84 |
+
)
|
85 |
+
|
86 |
+
iface.launch(share=True)
|