Spaces:
Runtime error
Runtime error
import json | |
import os | |
import time | |
import gradio as gr | |
import requests | |
from demo.log import logger | |
from demo.util import download_svgs, upload_np_2_oss, download_images | |
API_KEY = os.getenv("API_KEY_GENERATION") | |
def convert_bool_to_str(value): | |
if value: | |
return "True" | |
else: | |
return "False" | |
def call_generation(input_path, | |
preprocess, | |
simplify, | |
optimize, | |
mode, | |
subsample_ratio, | |
speckle_removal, | |
sorting_method, | |
sorting_order, | |
use_gpu): | |
## generate image name based on time stamp | |
time_str = time.strftime("%Y%m%d%H%M%S", time.localtime()) | |
img_name = f"upload_{time_str}.png" | |
svg_name = f"result_{time_str}" | |
BATCH_SIZE = 1 | |
if simplify: | |
BATCH_SIZE += 1 | |
if optimize: | |
BATCH_SIZE += 1 | |
img_url = upload_np_2_oss(input_path, name=img_name) | |
simplify = convert_bool_to_str(simplify) | |
optimize = convert_bool_to_str(optimize) | |
speckle_removal = convert_bool_to_str(speckle_removal) | |
use_gpu = convert_bool_to_str(use_gpu) | |
headers = { | |
"Content-Type": "application/json", | |
"Accept": "application/json", | |
"Authorization": f"Bearer {API_KEY}", | |
"X-DashScope-Async": "enable", | |
} | |
data = { | |
"model": "pre-vectorize_anything-2333", | |
"input": { | |
"base_image_url": img_url | |
}, | |
"parameters":{ | |
"preprocess": preprocess, | |
"mode": mode, | |
"simplify": simplify, | |
"optimize": optimize, | |
"sorting_method": sorting_method, | |
"sorting_order": sorting_order, | |
"subsample_ratio": subsample_ratio, | |
"speckle_removal": speckle_removal, | |
"use_GPU": use_gpu | |
} | |
} | |
url_create_task = 'https://poc-dashscope.aliyuncs.com/api/v1/services/vision/image-process/process' | |
all_res_ = [] | |
REPEAT = 1 | |
for _ in range(REPEAT): | |
try: | |
res_ = requests.post(url_create_task, data=json.dumps(data), headers=headers, timeout=60) | |
print(json.dumps(data)) | |
all_res_.append(res_) | |
except requests.Timeout: | |
# back off and retry | |
raise gr.Error("网络波动,请求失败,请再次尝试") | |
all_image_data = [] | |
for res_ in all_res_: | |
respose_code = res_.status_code | |
if 200 == respose_code: | |
res = json.loads(res_.content.decode()) | |
request_id = res['request_id'] | |
task_id = res['output']['task_id'] | |
logger.info(f"task_id: {task_id}: Create Vectorization I2V request success. Params: {data}") | |
# 异步查询 | |
is_running = True | |
while is_running: | |
# url_query = f'https://dashscope.aliyuncs.com/api/v1/tasks/{task_id}' | |
url_query = f'https://poc-dashscope.aliyuncs.com/api/v1/tasks/{task_id}' | |
try: | |
res_ = requests.post(url_query, headers=headers, timeout=60) | |
except requests.Timeout: | |
# back off and retry | |
raise gr.Error("网络波动,请求失败,请再次尝试") | |
respose_code = res_.status_code | |
if 200 == respose_code: | |
res = json.loads(res_.content.decode()) | |
if "SUCCEEDED" == res['output']['task_status']: | |
logger.info(f"task_id: {task_id}: Generation task query success.") | |
results = res['output'] | |
img_urls = results['output_img'] | |
logger.info(f"task_id: {task_id}: {res}") | |
break | |
elif "FAILED" != res['output']['task_status']: | |
logger.debug(f"task_id: {task_id}: query result...") | |
time.sleep(1) | |
else: | |
raise gr.Error('Fail to get results from Generation task.') | |
else: | |
logger.error(f'task_id: {task_id}: Fail to query task result: {res_.content}') | |
raise gr.Error("Fail to query task result.") | |
logger.info(f"task_id: {task_id}: download generated images.") | |
img_data = download_svgs(img_urls, BATCH_SIZE, svg_name) | |
logger.info(f"task_id: {task_id}: Generate done.") | |
all_image_data += img_data | |
else: | |
logger.error(f'Fail to create Generation task: {res_.content}') | |
raise gr.Error("Fail to create Generation task.") | |
if len(all_image_data) != REPEAT * BATCH_SIZE: | |
raise gr.Error("Fail to Generation.") | |
return all_image_data[-1:] | |
def call_generation_t2v(prompt, | |
num_imgs, | |
image_resolution_h, | |
image_resolution_w, | |
details, | |
style, | |
vectorize, | |
preprocess, | |
simplify, | |
optimize, | |
mode, | |
subsample_ratio, | |
speckle_removal, | |
sorting_method, | |
sorting_order, | |
use_gpu): | |
## generate image name based on time stamp | |
time_str = time.strftime("%Y%m%d%H%M%S", time.localtime()) | |
# img_name = f"upload_{time_str}.png" | |
svg_name = f"result_{time_str}" | |
generate_img_name = f"generate_{time_str}" | |
BATCH_SIZE = 1 | |
count = 1 | |
start_ind = 0 | |
if simplify: | |
BATCH_SIZE += 1 | |
count +=1 | |
start_ind += 1 | |
if optimize: | |
BATCH_SIZE += 1 | |
start_ind += 1 | |
count +=1 | |
BATCH_SIZE *= num_imgs | |
# img_url = upload_np_2_oss(input_path, name=img_name) | |
# simplify = convert_bool_to_str(simplify) | |
# optimize = convert_bool_to_str(optimize) | |
# speckle_removal = convert_bool_to_str(speckle_removal) | |
# use_gpu = convert_bool_to_str(use_gpu) | |
headers = { | |
"Content-Type": "application/json", | |
"Accept": "application/json", | |
"Authorization": f"Bearer {API_KEY}", | |
"X-DashScope-Async": "enable", | |
} | |
data = { | |
"model": "pre-vectorize_anything_t2v-2352", | |
"input": { | |
"prompt": prompt | |
}, | |
"parameters":{ | |
"num_imgs" : num_imgs, | |
"image_resolution_h": image_resolution_h, | |
"image_resolution_w": image_resolution_w, | |
"details" : details, | |
"style" : style, | |
"vectorize" : vectorize, | |
"preprocess": preprocess, | |
"mode": mode, | |
"simplify": simplify, | |
"optimize": optimize, | |
"sorting_method": sorting_method, | |
"sorting_order": sorting_order, | |
"subsample_ratio": subsample_ratio, | |
"speckle_removal": speckle_removal, | |
"use_GPU": use_gpu | |
} | |
} | |
url_create_task = 'https://poc-dashscope.aliyuncs.com/api/v1/services/aigc/text2image/image-synthesis' | |
all_res_ = [] | |
REPEAT = 1 | |
for _ in range(REPEAT): | |
try: | |
res_ = requests.post(url_create_task, data=json.dumps(data), headers=headers, timeout=120) | |
print(json.dumps(data)) | |
all_res_.append(res_) | |
except requests.Timeout: | |
# back off and retry | |
raise gr.Error("网络波动,请求失败,请再次尝试") | |
all_image_data = [] | |
for res_ in all_res_: | |
respose_code = res_.status_code | |
if 200 == respose_code: | |
res = json.loads(res_.content.decode()) | |
request_id = res['request_id'] | |
task_id = res['output']['task_id'] | |
logger.info(f"task_id: {task_id}: Create Vectorize T2V request success. Params: {data}") | |
# 异步查询 | |
is_running = True | |
while is_running: | |
# url_query = f'https://dashscope.aliyuncs.com/api/v1/tasks/{task_id}' | |
url_query = f'https://poc-dashscope.aliyuncs.com/api/v1/tasks/{task_id}' | |
try: | |
res_ = requests.post(url_query, headers=headers, timeout=120) | |
except requests.Timeout: | |
# back off and retry | |
raise gr.Error("网络波动,请求失败,请再次尝试") | |
respose_code = res_.status_code | |
if 200 == respose_code: | |
res = json.loads(res_.content.decode()) | |
if "SUCCEEDED" == res['output']['task_status']: | |
logger.info(f"task_id: {task_id}: Generation task query success.") | |
results = res['output'] | |
img_urls = results['output_img'] | |
logger.info(f"task_id: {task_id}: {res}") | |
break | |
elif "FAILED" != res['output']['task_status']: | |
logger.debug(f"task_id: {task_id}: query result...") | |
time.sleep(1) | |
else: | |
raise gr.Error('Fail to get results from Generation task.') | |
else: | |
logger.error(f'task_id: {task_id}: Fail to query task result: {res_.content}') | |
raise gr.Error("Fail to query task result.") | |
logger.info(f"task_id: {task_id}: download generated images.") | |
if vectorize: | |
img_data = download_svgs(img_urls, BATCH_SIZE, svg_name) | |
else: | |
img_data = download_images(img_urls, num_imgs, generate_img_name) | |
logger.info(f"task_id: {task_id}: Generate done.") | |
all_image_data += img_data | |
else: | |
logger.error(f'Fail to create Generation task: {res_.content}') | |
raise gr.Error("Fail to create Generation task.") | |
if vectorize: | |
if len(all_image_data) != REPEAT * BATCH_SIZE: | |
raise gr.Error("Fail to Generation.") | |
else: | |
if len(all_image_data) != REPEAT * num_imgs: | |
raise gr.Error("Fail to Generation.") | |
return all_image_data[start_ind::BATCH_SIZE//num_imgs] | |
if __name__ == "__main__": | |
call_generation() | |