import gradio as gr from transformers import BlipProcessor, BlipForConditionalGeneration from PIL import Image processor = BlipProcessor.from_pretrained("Salesforce/blip-image-captioning-base") model = BlipForConditionalGeneration.from_pretrained("Salesforce/blip-image-captioning-base") def caption(img): inputs = processor(images=img, return_tensors="pt") out = model.generate(**inputs) return processor.decode(out[0], skip_special_tokens=True) gr.Interface(fn=caption, inputs=gr.Image(), outputs="text", title="Image Captioning").launch()