Spaces:
Sleeping
Sleeping
Fifth commit
Browse files
app.py
CHANGED
|
@@ -248,62 +248,60 @@ def train_model(
|
|
| 248 |
|
| 249 |
# Create Gradio interface
|
| 250 |
def create_interface():
|
| 251 |
-
|
| 252 |
-
|
| 253 |
-
|
| 254 |
-
|
| 255 |
-
|
| 256 |
-
|
| 257 |
-
|
| 258 |
-
|
| 259 |
-
|
| 260 |
-
|
| 261 |
-
|
| 262 |
-
|
| 263 |
-
|
| 264 |
-
|
| 265 |
-
|
| 266 |
-
|
| 267 |
-
|
| 268 |
-
|
| 269 |
-
|
| 270 |
-
|
| 271 |
-
|
| 272 |
-
|
| 273 |
-
|
| 274 |
-
|
| 275 |
-
|
| 276 |
-
|
| 277 |
-
|
| 278 |
-
|
| 279 |
-
|
| 280 |
-
|
| 281 |
-
|
| 282 |
-
|
| 283 |
-
|
| 284 |
-
|
| 285 |
-
|
| 286 |
-
|
| 287 |
-
|
| 288 |
-
|
| 289 |
-
|
| 290 |
-
|
| 291 |
-
|
| 292 |
-
|
| 293 |
-
|
| 294 |
-
|
| 295 |
-
|
| 296 |
-
|
| 297 |
-
|
| 298 |
-
|
| 299 |
-
|
| 300 |
-
|
| 301 |
-
|
| 302 |
-
|
| 303 |
-
|
| 304 |
-
|
| 305 |
-
4. Wait for training to complete
|
| 306 |
-
""")
|
| 307 |
|
| 308 |
return demo
|
| 309 |
|
|
@@ -314,4 +312,4 @@ if __name__ == "__main__":
|
|
| 314 |
|
| 315 |
# Launch Gradio interface
|
| 316 |
demo = create_interface()
|
| 317 |
-
demo.launch(share=True)
|
|
|
|
| 248 |
|
| 249 |
# Create Gradio interface
|
| 250 |
def create_interface():
|
| 251 |
+
# Configure Gradio to handle larger file uploads
|
| 252 |
+
gr.Config(upload_size_limit=100)
|
| 253 |
+
|
| 254 |
+
with gr.Row():
|
| 255 |
+
with gr.Column():
|
| 256 |
+
file_input = gr.File(
|
| 257 |
+
label="Upload Training Data (CSV)",
|
| 258 |
+
type="binary",
|
| 259 |
+
file_types=[".csv"]
|
| 260 |
+
)
|
| 261 |
+
|
| 262 |
+
learning_rate = gr.Slider(
|
| 263 |
+
minimum=1e-5,
|
| 264 |
+
maximum=1e-3,
|
| 265 |
+
value=2e-4,
|
| 266 |
+
label="Learning Rate"
|
| 267 |
+
)
|
| 268 |
+
|
| 269 |
+
num_epochs = gr.Slider(
|
| 270 |
+
minimum=1,
|
| 271 |
+
maximum=10,
|
| 272 |
+
value=3,
|
| 273 |
+
step=1,
|
| 274 |
+
label="Number of Epochs"
|
| 275 |
+
)
|
| 276 |
+
|
| 277 |
+
batch_size = gr.Slider(
|
| 278 |
+
minimum=1,
|
| 279 |
+
maximum=8,
|
| 280 |
+
value=4,
|
| 281 |
+
step=1,
|
| 282 |
+
label="Batch Size"
|
| 283 |
+
)
|
| 284 |
+
|
| 285 |
+
train_button = gr.Button("Start Training")
|
| 286 |
+
|
| 287 |
+
with gr.Column():
|
| 288 |
+
output = gr.Textbox(label="Training Status")
|
| 289 |
+
|
| 290 |
+
train_button.click(
|
| 291 |
+
fn=train_model,
|
| 292 |
+
inputs=[file_input, learning_rate, num_epochs, batch_size],
|
| 293 |
+
outputs=output
|
| 294 |
+
)
|
| 295 |
+
|
| 296 |
+
gr.Markdown("""
|
| 297 |
+
## Instructions
|
| 298 |
+
1. Upload your training data in CSV format with columns:
|
| 299 |
+
- chunk_id (questions)
|
| 300 |
+
- text (answers)
|
| 301 |
+
2. Adjust training parameters if needed
|
| 302 |
+
3. Click 'Start Training'
|
| 303 |
+
4. Wait for training to complete
|
| 304 |
+
""")
|
|
|
|
|
|
|
| 305 |
|
| 306 |
return demo
|
| 307 |
|
|
|
|
| 312 |
|
| 313 |
# Launch Gradio interface
|
| 314 |
demo = create_interface()
|
| 315 |
+
demo.launch(share=True, server_port=7860, server_name="0.0.0.0", max_upload_size=100)
|