|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import os |
|
import re |
|
from typing import Optional |
|
import tempfile |
|
from PIL import Image as PILImage |
|
|
|
from smolagents.agent_types import AgentAudio, AgentImage, AgentText, handle_agent_output_types |
|
from smolagents.agents import ActionStep, MultiStepAgent |
|
from smolagents.memory import MemoryStep |
|
from smolagents.utils import _is_package_available |
|
import gradio as gr |
|
|
|
|
|
def pull_messages_from_step_dict(step_log: MemoryStep): |
|
"""Extract messages as dicts for Gradio type='messages' Chatbot""" |
|
if isinstance(step_log, ActionStep): |
|
step_number_str = f"Step {step_log.step_number}" if step_log.step_number is not None else "Processing" |
|
yield {"role": "assistant", "content": f"**{step_number_str}**"} |
|
|
|
if hasattr(step_log, "model_output") and step_log.model_output is not None: |
|
model_output = step_log.model_output.strip() |
|
model_output = re.sub(r"```\s*<end_code>[\s\S]*|[\s\S]*<end_code>\s*```", "```", model_output, flags=re.DOTALL) |
|
model_output = re.sub(r"<end_code>", "", model_output) |
|
model_output = model_output.strip() |
|
yield {"role": "assistant", "content": model_output} |
|
|
|
if hasattr(step_log, "tool_calls") and step_log.tool_calls: |
|
tc = step_log.tool_calls[0] |
|
tool_info_md = f"🛠️ **Tool Used: {tc.name}**\n" |
|
|
|
args = tc.arguments |
|
if isinstance(args, dict): |
|
args_str = str(args.get("answer", str(args))) |
|
else: |
|
args_str = str(args).strip() |
|
|
|
if tc.name == "python_interpreter": |
|
code_content = args_str |
|
code_content = re.sub(r"^```python\s*\n?", "", code_content) |
|
code_content = re.sub(r"\n?```\s*$", "", code_content) |
|
code_content = re.sub(r"^\s*<end_code>\s*", "", code_content) |
|
code_content = re.sub(r"\s*<end_code>\s*$", "", code_content) |
|
code_content = code_content.strip() |
|
tool_info_md += f"Executing Code:\n```python\n{code_content}\n```\n" |
|
else: |
|
tool_info_md += f"Arguments: `{args_str}`\n" |
|
|
|
if hasattr(step_log, "observations") and step_log.observations and step_log.observations.strip(): |
|
obs_content = step_log.observations.strip() |
|
obs_content = re.sub(r"^Execution logs:\s*", "", obs_content).strip() |
|
if obs_content: |
|
tool_info_md += f"📝 **Tool Output/Logs:**\n```text\n{obs_content}\n```\n" |
|
|
|
if hasattr(step_log, "error") and step_log.error: |
|
tool_info_md += f"💥 **Error:** {str(step_log.error)}\n" |
|
|
|
yield {"role": "assistant", "content": tool_info_md.strip()} |
|
|
|
elif hasattr(step_log, "error") and step_log.error: |
|
yield {"role": "assistant", "content": f"💥 **Error:** {str(step_log.error)}"} |
|
|
|
footnote_parts = [] |
|
if step_log.step_number is not None: |
|
footnote_parts.append(f"Step {step_log.step_number}") |
|
if hasattr(step_log, "duration") and step_log.duration is not None: |
|
footnote_parts.append(f"Duration: {round(float(step_log.duration), 2)}s") |
|
if hasattr(step_log, "input_token_count") and step_log.input_token_count is not None: |
|
footnote_parts.append(f"InTokens: {step_log.input_token_count:,}") |
|
if hasattr(step_log, "output_token_count") and step_log.output_token_count is not None: |
|
footnote_parts.append(f"OutTokens: {step_log.output_token_count:,}") |
|
|
|
if footnote_parts: |
|
footnote_text = " | ".join(footnote_parts) |
|
yield {"role": "assistant", "content": f"""<p style="color: #999; font-size: 0.8em; margin-top:0; margin-bottom:0;">{footnote_text}</p>"""} |
|
yield {"role": "assistant", "content": "---"} |
|
|
|
|
|
def stream_to_gradio( |
|
agent, |
|
task: str, |
|
reset_agent_memory: bool = False, |
|
additional_args: Optional[dict] = None, |
|
): |
|
if not _is_package_available("gradio"): |
|
raise ModuleNotFoundError("Install 'gradio': `pip install 'smolagents[gradio]'`") |
|
|
|
if hasattr(agent, 'interaction_logs'): |
|
agent.interaction_logs.clear() |
|
print("DEBUG Gradio: Cleared agent interaction_logs for new run.") |
|
|
|
all_step_logs = [] |
|
for step_log in agent.run(task, stream=True, reset=reset_agent_memory, additional_args=additional_args): |
|
all_step_logs.append(step_log) |
|
if hasattr(agent.model, "last_input_token_count") and agent.model.last_input_token_count is not None: |
|
if isinstance(step_log, ActionStep): |
|
step_log.input_token_count = agent.model.last_input_token_count |
|
step_log.output_token_count = agent.model.last_output_token_count |
|
|
|
for msg_dict in pull_messages_from_step_dict(step_log): |
|
yield msg_dict |
|
|
|
if not all_step_logs: |
|
yield {"role": "assistant", "content": "Agent did not produce any output."} |
|
return |
|
|
|
final_answer_content = all_step_logs[-1] |
|
|
|
actual_content_for_handling = final_answer_content |
|
if hasattr(final_answer_content, 'final_answer') and not isinstance(final_answer_content, (str, PILImage.Image, tuple)): |
|
actual_content_for_handling = final_answer_content.final_answer |
|
print(f"DEBUG Gradio: Extracted actual_content_for_handling from FinalAnswerStep: {type(actual_content_for_handling)}") |
|
|
|
if isinstance(actual_content_for_handling, PILImage.Image): |
|
print("DEBUG Gradio (stream_to_gradio): Actual content IS a raw PIL Image.") |
|
try: |
|
with tempfile.NamedTemporaryFile(delete=False, suffix=".png") as tmp_file: |
|
actual_content_for_handling.save(tmp_file, format="PNG") |
|
image_path_for_gradio = tmp_file.name |
|
print(f"DEBUG Gradio: Saved PIL image to temp path: {image_path_for_gradio}") |
|
yield {"role": "assistant", "content": (image_path_for_gradio, "Generated Image")} |
|
return |
|
except Exception as e: |
|
print(f"DEBUG Gradio: Error saving extracted PIL image: {e}") |
|
yield {"role": "assistant", "content": f"**Final Answer (Error displaying image):** {e}"} |
|
return |
|
|
|
final_answer_processed = handle_agent_output_types(actual_content_for_handling) |
|
print(f"DEBUG Gradio: final_answer_processed type after handle_agent_output_types: {type(final_answer_processed)}") |
|
|
|
if isinstance(final_answer_processed, AgentText): |
|
yield {"role": "assistant", "content": f"**Final Answer:**\n{final_answer_processed.to_string()}"} |
|
elif isinstance(final_answer_processed, AgentImage): |
|
image_path = final_answer_processed.to_string() |
|
print(f"DEBUG Gradio (stream_to_gradio): final_answer_processed is AgentImage. Path: {image_path}") |
|
if image_path and os.path.exists(image_path): |
|
yield {"role": "assistant", "content": (image_path, "Generated Image (from AgentImage)")} |
|
else: |
|
err_msg = f"Error: Image path from AgentImage ('{image_path}') not found or invalid." |
|
print(f"DEBUG Gradio: {err_msg}") |
|
yield {"role": "assistant", "content": f"**Final Answer ({err_msg})**"} |
|
elif isinstance(final_answer_processed, AgentAudio): |
|
audio_path = final_answer_processed.to_string() |
|
print(f"DEBUG Gradio (stream_to_gradio): AgentAudio path: {audio_path}") |
|
if audio_path and os.path.exists(audio_path): |
|
yield {"role": "assistant", "content": (audio_path, "Generated Audio")} |
|
else: |
|
err_msg = f"Error: Audio path from AgentAudio ('{audio_path}') not found" |
|
print(f"DEBUG Gradio: {err_msg}") |
|
yield {"role": "assistant", "content": f"**Final Answer ({err_msg})**"} |
|
else: |
|
yield {"role": "assistant", "content": f"**Final Answer:**\n{str(final_answer_processed)}"} |
|
|
|
|
|
class GradioUI: |
|
def __init__(self, agent: MultiStepAgent, file_upload_folder: str | None = None): |
|
if not _is_package_available("gradio"): |
|
raise ModuleNotFoundError("Install 'gradio': `pip install 'smolagents[gradio]'`") |
|
self.agent = agent |
|
self.file_upload_folder = None |
|
self._latest_file_path_for_download = None |
|
|
|
def _get_created_document_path(self): |
|
if hasattr(self.agent, 'interaction_logs') and self.agent.interaction_logs: |
|
print(f"DEBUG Gradio UI: Checking {len(self.agent.interaction_logs)} interaction log entries for created document paths.") |
|
for log_entry in reversed(self.agent.interaction_logs): |
|
if isinstance(log_entry, ActionStep): |
|
observations = getattr(log_entry, 'observations', None) |
|
tool_calls = getattr(log_entry, 'tool_calls', []) |
|
|
|
is_python_interpreter_step = any(tc.name == "python_interpreter" for tc in tool_calls) |
|
|
|
if is_python_interpreter_step and observations and isinstance(observations, str): |
|
|
|
print(f"DEBUG Gradio UI (_get_created_document_path): Python Interpreter Observations: '''{observations}'''") |
|
|
|
match = re.search( |
|
r"(?:Document created \((?:docx|pdf|txt)\):|Document converted to PDF:)\s*(/tmp/[a-zA-Z0-9_]+/generated_document\.(?:docx|pdf|txt))", |
|
observations, |
|
re.MULTILINE |
|
) |
|
|
|
if match: |
|
extracted_path = match.group(1) |
|
print(f"DEBUG Gradio UI: Regex matched. Extracted path: '{extracted_path}'") |
|
normalized_path = os.path.normpath(extracted_path) |
|
if os.path.exists(normalized_path): |
|
print(f"DEBUG Gradio UI: Validated path for download: {normalized_path}") |
|
return normalized_path |
|
else: |
|
print(f"DEBUG Gradio UI: Path from create_document output ('{normalized_path}') does not exist.") |
|
print("DEBUG Gradio UI: No valid generated document path found in agent logs.") |
|
return None |
|
|
|
def interact_with_agent(self, prompt_text: str, current_chat_history: list): |
|
print(f"DEBUG Gradio: interact_with_agent called with prompt: '{prompt_text}'") |
|
|
|
updated_chat_history = current_chat_history + [{"role": "user", "content": prompt_text}] |
|
|
|
yield updated_chat_history, gr.update(value=None, visible=False) |
|
|
|
agent_responses_for_history = [] |
|
for msg_dict in stream_to_gradio(self.agent, task=prompt_text, reset_agent_memory=False): |
|
agent_responses_for_history.append(msg_dict) |
|
yield updated_chat_history + agent_responses_for_history, gr.update(value=None, visible=False) |
|
|
|
final_chat_display_content = updated_chat_history + agent_responses_for_history |
|
|
|
document_path_to_display = self._get_created_document_path() |
|
|
|
if document_path_to_display: |
|
print(f"DEBUG Gradio: Document found for display: {document_path_to_display}") |
|
|
|
yield final_chat_display_content, gr.update(value=document_path_to_display, |
|
label=os.path.basename(document_path_to_display), |
|
visible=True) |
|
else: |
|
print(f"DEBUG Gradio: No document found for display.") |
|
|
|
yield final_chat_display_content, gr.update(value=None, visible=False) |
|
|
|
|
|
def log_user_message(self, text_input_value: str): |
|
full_prompt = text_input_value |
|
print(f"DEBUG Gradio: Prepared prompt for agent: {full_prompt[:300]}...") |
|
return full_prompt, "" |
|
|
|
|
|
|
|
def launch(self, **kwargs): |
|
with gr.Blocks(fill_height=True, theme=gr.themes.Soft(primary_hue=gr.themes.colors.blue)) as demo: |
|
prepared_prompt_for_agent = gr.State("") |
|
|
|
gr.Markdown("## Smol Talk with your Agent") |
|
|
|
with gr.Row(equal_height=False): |
|
with gr.Column(scale=3): |
|
chatbot_display = gr.Chatbot( |
|
type="messages", |
|
avatar_images=(None, "https://huggingface.co/datasets/huggingface/brand-assets/resolve/main/hf-logo-round.png"), |
|
height=700, |
|
show_copy_button=True, |
|
bubble_full_width=False, |
|
show_label=False |
|
) |
|
text_message_input = gr.Textbox( |
|
lines=1, |
|
placeholder="Type your message and press Enter, or Shift+Enter for new line...", |
|
show_label=False |
|
) |
|
|
|
with gr.Column(scale=1): |
|
|
|
gr.Markdown("### Generated Document") |
|
file_download_display_component = gr.File( |
|
label="Downloadable Document", |
|
visible=False, |
|
interactive=False |
|
) |
|
|
|
text_message_input.submit( |
|
self.log_user_message, |
|
[text_message_input], |
|
[prepared_prompt_for_agent, text_message_input] |
|
).then( |
|
self.interact_with_agent, |
|
[prepared_prompt_for_agent, chatbot_display], |
|
[chatbot_display, file_download_display_component] |
|
) |
|
|
|
demo.launch(debug=True, share=kwargs.get("share", False), **kwargs) |
|
|
|
__all__ = ["stream_to_gradio", "GradioUI"] |