Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
|
@@ -3,13 +3,19 @@ import pandas as pd
|
|
| 3 |
from sentence_transformers import SentenceTransformer, util
|
| 4 |
import gradio as gr
|
| 5 |
import re
|
|
|
|
|
|
|
| 6 |
|
|
|
|
| 7 |
model = SentenceTransformer("distilbert-base-multilingual-cased")
|
| 8 |
modela = SentenceTransformer("paraphrase-multilingual-MiniLM-L12-v2")
|
|
|
|
|
|
|
| 9 |
df = pd.read_csv("cleaned1.csv")
|
| 10 |
df2 = pd.read_csv("cleaned2.csv")
|
| 11 |
df3 = pd.read_csv("cleaned3.csv")
|
| 12 |
|
|
|
|
| 13 |
embeddings = torch.load("embeddings1_1.pt")
|
| 14 |
embeddings2 = torch.load("embeddings2_1.pt")
|
| 15 |
embeddings3 = torch.load("embeddings3_1.pt")
|
|
@@ -18,6 +24,7 @@ embeddingsa = torch.load("embeddings1.pt")
|
|
| 18 |
embeddingsa2 = torch.load("embeddings2.pt")
|
| 19 |
embeddingsa3 = torch.load("embeddings3.pt")
|
| 20 |
|
|
|
|
| 21 |
df_questions = df["question"].values
|
| 22 |
df_links = df["link"].values
|
| 23 |
df2_questions = df2["question"].values
|
|
@@ -25,9 +32,6 @@ df2_links = df2["link"].values
|
|
| 25 |
df3_questions = df3["question"].values
|
| 26 |
df3_links = df3["url"].values
|
| 27 |
|
| 28 |
-
|
| 29 |
-
import re
|
| 30 |
-
|
| 31 |
ARABIC_STOPWORDS = {
|
| 32 |
'ูู', 'ู
ู', 'ุฅูู', 'ุนู', 'ู
ุน', 'ูุฐุง', 'ูุฐู', 'ุฐูู', 'ุชูู',
|
| 33 |
'ุงูุชู', 'ุงูุฐู', 'ู
ุง', 'ูุง', 'ุฃู', 'ุฃู', 'ููู', 'ูุฏ', 'ุญูู
', 'ูุงู',
|
|
@@ -43,8 +47,36 @@ def arabic_word_tokenize(text):
|
|
| 43 |
tokens = re.findall(r'[\u0600-\u06FF]{2,}', text)
|
| 44 |
return [t for t in tokens if t not in ARABIC_STOPWORDS]
|
| 45 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 46 |
|
| 47 |
def compute_word_overlap(query, questions):
|
|
|
|
| 48 |
query_words = set(arabic_word_tokenize(query))
|
| 49 |
if len(query_words) == 0:
|
| 50 |
return [0.0] * len(questions)
|
|
@@ -56,7 +88,7 @@ def compute_word_overlap(query, questions):
|
|
| 56 |
overlaps.append(0.0)
|
| 57 |
continue
|
| 58 |
|
| 59 |
-
# Use Jaccard similarity (intersection over union)
|
| 60 |
intersection = len(query_words & q_words)
|
| 61 |
union = len(query_words | q_words)
|
| 62 |
jaccard = intersection / union if union > 0 else 0.0
|
|
@@ -70,15 +102,23 @@ def compute_word_overlap(query, questions):
|
|
| 70 |
|
| 71 |
return overlaps
|
| 72 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 73 |
def predict(text):
|
| 74 |
-
print(f"Received
|
| 75 |
if not text or text.strip() == "":
|
| 76 |
return "No query provided"
|
| 77 |
|
|
|
|
| 78 |
query_embedding = model.encode(text, convert_to_tensor=True)
|
| 79 |
query_embeddinga = modela.encode(text, convert_to_tensor=True)
|
| 80 |
|
| 81 |
-
# Cosine similarities
|
| 82 |
sim_scores1 = (util.pytorch_cos_sim(query_embedding, embeddings)[0] +
|
| 83 |
util.pytorch_cos_sim(query_embeddinga, embeddingsa)[0]) / 2
|
| 84 |
sim_scores2 = (util.pytorch_cos_sim(query_embedding, embeddings2)[0] +
|
|
@@ -86,143 +126,161 @@ def predict(text):
|
|
| 86 |
sim_scores3 = (util.pytorch_cos_sim(query_embedding, embeddings3)[0] +
|
| 87 |
util.pytorch_cos_sim(query_embeddinga, embeddingsa3)[0]) / 2
|
| 88 |
|
| 89 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 90 |
word_overlap1 = compute_word_overlap(text, df_questions)
|
| 91 |
word_overlap2 = compute_word_overlap(text, df2_questions)
|
| 92 |
word_overlap3 = compute_word_overlap(text, df3_questions)
|
| 93 |
|
| 94 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 95 |
query_words = arabic_word_tokenize(text)
|
| 96 |
-
|
| 97 |
-
|
| 98 |
-
|
| 99 |
-
|
| 100 |
-
|
| 101 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 102 |
else:
|
| 103 |
-
# Long queries: prioritize semantic
|
| 104 |
-
|
| 105 |
-
|
| 106 |
-
|
| 107 |
-
|
| 108 |
-
|
| 109 |
-
|
| 110 |
-
word_score = float(word_overlap1[i])
|
| 111 |
|
| 112 |
-
|
| 113 |
-
|
| 114 |
-
|
| 115 |
-
|
| 116 |
-
boost = 0.0
|
| 117 |
|
| 118 |
-
|
| 119 |
-
|
| 120 |
-
|
| 121 |
-
|
| 122 |
-
"link": df_links[i],
|
| 123 |
-
"cosine_score": semantic_score,
|
| 124 |
-
"word_overlap_score": word_score,
|
| 125 |
-
"combined_score": combined_score
|
| 126 |
-
})
|
| 127 |
-
|
| 128 |
-
# Collect top2 with better scoring
|
| 129 |
-
combined2 = []
|
| 130 |
-
for i in range(len(df2_questions)):
|
| 131 |
-
semantic_score = float(sim_scores2[i].cpu().item())
|
| 132 |
-
word_score = float(word_overlap2[i])
|
| 133 |
-
|
| 134 |
-
if semantic_score > 0.5 and word_score > 0.3:
|
| 135 |
-
boost = 0.1
|
| 136 |
-
else:
|
| 137 |
-
boost = 0.0
|
| 138 |
|
| 139 |
-
|
| 140 |
-
|
| 141 |
-
|
| 142 |
-
|
| 143 |
-
|
| 144 |
-
|
| 145 |
-
|
| 146 |
-
|
| 147 |
-
|
| 148 |
-
|
| 149 |
-
|
| 150 |
-
|
| 151 |
-
|
| 152 |
-
|
| 153 |
-
|
| 154 |
-
|
| 155 |
-
if semantic_score > 0.5 and word_score > 0.3:
|
| 156 |
-
boost = 0.1
|
| 157 |
-
else:
|
| 158 |
-
boost = 0.0
|
| 159 |
|
| 160 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 161 |
|
| 162 |
-
|
| 163 |
-
|
| 164 |
-
|
| 165 |
-
|
| 166 |
-
|
| 167 |
-
|
| 168 |
-
|
| 169 |
-
|
| 170 |
-
|
| 171 |
-
|
| 172 |
-
# Sort by combined score and get top 3
|
| 173 |
by_combined = sorted(combined_results, key=lambda x: x["combined_score"], reverse=True)
|
| 174 |
-
|
| 175 |
|
| 176 |
-
# Get
|
| 177 |
-
|
| 178 |
|
| 179 |
-
#
|
| 180 |
-
|
| 181 |
-
|
| 182 |
-
for item in
|
| 183 |
-
if item["question"] not in
|
| 184 |
-
|
| 185 |
break
|
| 186 |
|
| 187 |
-
#
|
| 188 |
-
by_semantic = sorted(combined_results, key=lambda x: x["
|
| 189 |
semantic_pick = None
|
| 190 |
-
|
| 191 |
-
|
| 192 |
-
excluded_questions.add(word_pick["question"])
|
| 193 |
|
| 194 |
for item in by_semantic:
|
| 195 |
-
if item["question"] not in
|
| 196 |
semantic_pick = item
|
| 197 |
break
|
| 198 |
|
| 199 |
# Combine results
|
| 200 |
-
final_results =
|
| 201 |
-
if
|
| 202 |
-
final_results.append(
|
| 203 |
if semantic_pick:
|
| 204 |
final_results.append(semantic_pick)
|
| 205 |
|
| 206 |
-
return final_results
|
| 207 |
|
| 208 |
-
|
| 209 |
-
|
| 210 |
-
|
|
|
|
| 211 |
|
| 212 |
results = {
|
| 213 |
|
| 214 |
"top2": top2,
|
| 215 |
"top3": top3,
|
| 216 |
"top1": top1,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 217 |
}
|
| 218 |
|
| 219 |
return results
|
| 220 |
|
| 221 |
-
title = "Search
|
| 222 |
iface = gr.Interface(
|
| 223 |
fn=predict,
|
| 224 |
-
inputs=[gr.Textbox(label="
|
| 225 |
outputs='json',
|
| 226 |
title=title,
|
|
|
|
| 227 |
)
|
| 228 |
-
|
|
|
|
|
|
|
|
|
| 3 |
from sentence_transformers import SentenceTransformer, util
|
| 4 |
import gradio as gr
|
| 5 |
import re
|
| 6 |
+
from rank_bm25 import BM25Okapi
|
| 7 |
+
import numpy as np
|
| 8 |
|
| 9 |
+
# Load models
|
| 10 |
model = SentenceTransformer("distilbert-base-multilingual-cased")
|
| 11 |
modela = SentenceTransformer("paraphrase-multilingual-MiniLM-L12-v2")
|
| 12 |
+
|
| 13 |
+
# Load data
|
| 14 |
df = pd.read_csv("cleaned1.csv")
|
| 15 |
df2 = pd.read_csv("cleaned2.csv")
|
| 16 |
df3 = pd.read_csv("cleaned3.csv")
|
| 17 |
|
| 18 |
+
# Load pre-computed embeddings
|
| 19 |
embeddings = torch.load("embeddings1_1.pt")
|
| 20 |
embeddings2 = torch.load("embeddings2_1.pt")
|
| 21 |
embeddings3 = torch.load("embeddings3_1.pt")
|
|
|
|
| 24 |
embeddingsa2 = torch.load("embeddings2.pt")
|
| 25 |
embeddingsa3 = torch.load("embeddings3.pt")
|
| 26 |
|
| 27 |
+
# Extract questions and links
|
| 28 |
df_questions = df["question"].values
|
| 29 |
df_links = df["link"].values
|
| 30 |
df2_questions = df2["question"].values
|
|
|
|
| 32 |
df3_questions = df3["question"].values
|
| 33 |
df3_links = df3["url"].values
|
| 34 |
|
|
|
|
|
|
|
|
|
|
| 35 |
ARABIC_STOPWORDS = {
|
| 36 |
'ูู', 'ู
ู', 'ุฅูู', 'ุนู', 'ู
ุน', 'ูุฐุง', 'ูุฐู', 'ุฐูู', 'ุชูู',
|
| 37 |
'ุงูุชู', 'ุงูุฐู', 'ู
ุง', 'ูุง', 'ุฃู', 'ุฃู', 'ููู', 'ูุฏ', 'ุญูู
', 'ูุงู',
|
|
|
|
| 47 |
tokens = re.findall(r'[\u0600-\u06FF]{2,}', text)
|
| 48 |
return [t for t in tokens if t not in ARABIC_STOPWORDS]
|
| 49 |
|
| 50 |
+
def prepare_bm25_corpus(questions):
|
| 51 |
+
"""Prepare tokenized corpus for BM25"""
|
| 52 |
+
tokenized_corpus = []
|
| 53 |
+
for question in questions:
|
| 54 |
+
tokens = arabic_word_tokenize(question)
|
| 55 |
+
tokenized_corpus.append(tokens)
|
| 56 |
+
return tokenized_corpus
|
| 57 |
+
|
| 58 |
+
# Initialize BM25 models for each dataset
|
| 59 |
+
print("Initializing BM25 models...")
|
| 60 |
+
bm25_corpus1 = prepare_bm25_corpus(df_questions)
|
| 61 |
+
bm25_corpus2 = prepare_bm25_corpus(df2_questions)
|
| 62 |
+
bm25_corpus3 = prepare_bm25_corpus(df3_questions)
|
| 63 |
+
|
| 64 |
+
bm25_model1 = BM25Okapi(bm25_corpus1)
|
| 65 |
+
bm25_model2 = BM25Okapi(bm25_corpus2)
|
| 66 |
+
bm25_model3 = BM25Okapi(bm25_corpus3)
|
| 67 |
+
print("BM25 models initialized!")
|
| 68 |
+
|
| 69 |
+
def compute_bm25_scores(query, bm25_model):
|
| 70 |
+
"""Compute BM25 scores for a query"""
|
| 71 |
+
query_tokens = arabic_word_tokenize(query)
|
| 72 |
+
if not query_tokens:
|
| 73 |
+
return np.zeros(len(bm25_model.corpus))
|
| 74 |
+
|
| 75 |
+
scores = bm25_model.get_scores(query_tokens)
|
| 76 |
+
return scores
|
| 77 |
|
| 78 |
def compute_word_overlap(query, questions):
|
| 79 |
+
"""Enhanced word overlap computation"""
|
| 80 |
query_words = set(arabic_word_tokenize(query))
|
| 81 |
if len(query_words) == 0:
|
| 82 |
return [0.0] * len(questions)
|
|
|
|
| 88 |
overlaps.append(0.0)
|
| 89 |
continue
|
| 90 |
|
| 91 |
+
# Use Jaccard similarity (intersection over union)
|
| 92 |
intersection = len(query_words & q_words)
|
| 93 |
union = len(query_words | q_words)
|
| 94 |
jaccard = intersection / union if union > 0 else 0.0
|
|
|
|
| 102 |
|
| 103 |
return overlaps
|
| 104 |
|
| 105 |
+
def normalize_scores(scores):
|
| 106 |
+
"""Normalize scores to 0-1 range"""
|
| 107 |
+
scores = np.array(scores)
|
| 108 |
+
if np.max(scores) == np.min(scores):
|
| 109 |
+
return np.zeros_like(scores)
|
| 110 |
+
return (scores - np.min(scores)) / (np.max(scores) - np.min(scores))
|
| 111 |
+
|
| 112 |
def predict(text):
|
| 113 |
+
print(f"Received query: {text}")
|
| 114 |
if not text or text.strip() == "":
|
| 115 |
return "No query provided"
|
| 116 |
|
| 117 |
+
# Semantic similarity scores
|
| 118 |
query_embedding = model.encode(text, convert_to_tensor=True)
|
| 119 |
query_embeddinga = modela.encode(text, convert_to_tensor=True)
|
| 120 |
|
| 121 |
+
# Cosine similarities (averaged from two models)
|
| 122 |
sim_scores1 = (util.pytorch_cos_sim(query_embedding, embeddings)[0] +
|
| 123 |
util.pytorch_cos_sim(query_embeddinga, embeddingsa)[0]) / 2
|
| 124 |
sim_scores2 = (util.pytorch_cos_sim(query_embedding, embeddings2)[0] +
|
|
|
|
| 126 |
sim_scores3 = (util.pytorch_cos_sim(query_embedding, embeddings3)[0] +
|
| 127 |
util.pytorch_cos_sim(query_embeddinga, embeddingsa3)[0]) / 2
|
| 128 |
|
| 129 |
+
# BM25 scores
|
| 130 |
+
bm25_scores1 = compute_bm25_scores(text, bm25_model1)
|
| 131 |
+
bm25_scores2 = compute_bm25_scores(text, bm25_model2)
|
| 132 |
+
bm25_scores3 = compute_bm25_scores(text, bm25_model3)
|
| 133 |
+
|
| 134 |
+
# Word overlap scores
|
| 135 |
word_overlap1 = compute_word_overlap(text, df_questions)
|
| 136 |
word_overlap2 = compute_word_overlap(text, df2_questions)
|
| 137 |
word_overlap3 = compute_word_overlap(text, df3_questions)
|
| 138 |
|
| 139 |
+
# Normalize all scores for fair combination
|
| 140 |
+
norm_sim1 = normalize_scores(sim_scores1.cpu().numpy())
|
| 141 |
+
norm_sim2 = normalize_scores(sim_scores2.cpu().numpy())
|
| 142 |
+
norm_sim3 = normalize_scores(sim_scores3.cpu().numpy())
|
| 143 |
+
|
| 144 |
+
norm_bm25_1 = normalize_scores(bm25_scores1)
|
| 145 |
+
norm_bm25_2 = normalize_scores(bm25_scores2)
|
| 146 |
+
norm_bm25_3 = normalize_scores(bm25_scores3)
|
| 147 |
+
|
| 148 |
+
norm_word1 = normalize_scores(word_overlap1)
|
| 149 |
+
norm_word2 = normalize_scores(word_overlap2)
|
| 150 |
+
norm_word3 = normalize_scores(word_overlap3)
|
| 151 |
+
|
| 152 |
+
# Adaptive weighting based on query characteristics
|
| 153 |
query_words = arabic_word_tokenize(text)
|
| 154 |
+
query_length = len(query_words)
|
| 155 |
+
|
| 156 |
+
if query_length <= 2:
|
| 157 |
+
# Short queries: prioritize exact matches (BM25 + word overlap)
|
| 158 |
+
semantic_weight = 0.3
|
| 159 |
+
bm25_weight = 0.4
|
| 160 |
+
word_weight = 0.3
|
| 161 |
+
elif query_length <= 5:
|
| 162 |
+
# Medium queries: balanced approach
|
| 163 |
+
semantic_weight = 0.4
|
| 164 |
+
bm25_weight = 0.35
|
| 165 |
+
word_weight = 0.25
|
| 166 |
else:
|
| 167 |
+
# Long queries: prioritize semantic understanding
|
| 168 |
+
semantic_weight = 0.5
|
| 169 |
+
bm25_weight = 0.3
|
| 170 |
+
word_weight = 0.2
|
| 171 |
+
|
| 172 |
+
def create_combined_results(questions, links, norm_semantic, norm_bm25, norm_word):
|
| 173 |
+
combined_results = []
|
|
|
|
| 174 |
|
| 175 |
+
for i in range(len(questions)):
|
| 176 |
+
semantic_score = float(norm_semantic[i])
|
| 177 |
+
bm25_score = float(norm_bm25[i])
|
| 178 |
+
word_score = float(norm_word[i])
|
|
|
|
| 179 |
|
| 180 |
+
# Enhanced scoring with BM25
|
| 181 |
+
combined_score = (semantic_weight * semantic_score +
|
| 182 |
+
bm25_weight * bm25_score +
|
| 183 |
+
word_weight * word_score)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 184 |
|
| 185 |
+
# Boost results that perform well across multiple metrics
|
| 186 |
+
high_performance_count = sum([
|
| 187 |
+
semantic_score > 0.7,
|
| 188 |
+
bm25_score > 0.7,
|
| 189 |
+
word_score > 0.5
|
| 190 |
+
])
|
| 191 |
+
|
| 192 |
+
if high_performance_count >= 2:
|
| 193 |
+
boost = 0.1
|
| 194 |
+
elif high_performance_count >= 1:
|
| 195 |
+
boost = 0.05
|
| 196 |
+
else:
|
| 197 |
+
boost = 0.0
|
| 198 |
+
|
| 199 |
+
final_score = combined_score + boost
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 200 |
|
| 201 |
+
combined_results.append({
|
| 202 |
+
"question": questions[i],
|
| 203 |
+
"link": links[i],
|
| 204 |
+
"semantic_score": semantic_score,
|
| 205 |
+
"bm25_score": bm25_score,
|
| 206 |
+
"word_overlap_score": word_score,
|
| 207 |
+
"combined_score": final_score
|
| 208 |
+
})
|
| 209 |
|
| 210 |
+
return combined_results
|
| 211 |
+
|
| 212 |
+
# Create combined results for all datasets
|
| 213 |
+
combined1 = create_combined_results(df_questions, df_links, norm_sim1, norm_bm25_1, norm_word1)
|
| 214 |
+
combined2 = create_combined_results(df2_questions, df2_links, norm_sim2, norm_bm25_2, norm_word2)
|
| 215 |
+
combined3 = create_combined_results(df3_questions, df3_links, norm_sim3, norm_bm25_3, norm_word3)
|
| 216 |
+
|
| 217 |
+
def get_diverse_top_results(combined_results, top_k=5):
|
| 218 |
+
"""Get diverse top results using multiple ranking strategies"""
|
| 219 |
+
# Sort by combined score and get top candidates
|
|
|
|
| 220 |
by_combined = sorted(combined_results, key=lambda x: x["combined_score"], reverse=True)
|
| 221 |
+
top_combined = by_combined[:3]
|
| 222 |
|
| 223 |
+
# Get questions from top combined to avoid duplicates
|
| 224 |
+
used_questions = {item["question"] for item in top_combined}
|
| 225 |
|
| 226 |
+
# Add best BM25 result not already included
|
| 227 |
+
by_bm25 = sorted(combined_results, key=lambda x: x["bm25_score"], reverse=True)
|
| 228 |
+
bm25_pick = None
|
| 229 |
+
for item in by_bm25:
|
| 230 |
+
if item["question"] not in used_questions:
|
| 231 |
+
bm25_pick = item
|
| 232 |
break
|
| 233 |
|
| 234 |
+
# Add best semantic result not already included
|
| 235 |
+
by_semantic = sorted(combined_results, key=lambda x: x["semantic_score"], reverse=True)
|
| 236 |
semantic_pick = None
|
| 237 |
+
if bm25_pick:
|
| 238 |
+
used_questions.add(bm25_pick["question"])
|
|
|
|
| 239 |
|
| 240 |
for item in by_semantic:
|
| 241 |
+
if item["question"] not in used_questions:
|
| 242 |
semantic_pick = item
|
| 243 |
break
|
| 244 |
|
| 245 |
# Combine results
|
| 246 |
+
final_results = top_combined.copy()
|
| 247 |
+
if bm25_pick:
|
| 248 |
+
final_results.append(bm25_pick)
|
| 249 |
if semantic_pick:
|
| 250 |
final_results.append(semantic_pick)
|
| 251 |
|
| 252 |
+
return final_results[:top_k]
|
| 253 |
|
| 254 |
+
# Get top results for each dataset
|
| 255 |
+
top1 = get_diverse_top_results(combined1)
|
| 256 |
+
top2 = get_diverse_top_results(combined2)
|
| 257 |
+
top3 = get_diverse_top_results(combined3)
|
| 258 |
|
| 259 |
results = {
|
| 260 |
|
| 261 |
"top2": top2,
|
| 262 |
"top3": top3,
|
| 263 |
"top1": top1,
|
| 264 |
+
"query_info": {
|
| 265 |
+
"query_length": query_length,
|
| 266 |
+
"weights": {
|
| 267 |
+
"semantic": semantic_weight,
|
| 268 |
+
"bm25": bm25_weight,
|
| 269 |
+
"word_overlap": word_weight
|
| 270 |
+
}
|
| 271 |
+
}
|
| 272 |
}
|
| 273 |
|
| 274 |
return results
|
| 275 |
|
| 276 |
+
title = "Enhanced Search with BM25"
|
| 277 |
iface = gr.Interface(
|
| 278 |
fn=predict,
|
| 279 |
+
inputs=[gr.Textbox(label="Search Query", lines=3)],
|
| 280 |
outputs='json',
|
| 281 |
title=title,
|
| 282 |
+
description="Arabic text search using combined semantic similarity, BM25, and word overlap scoring"
|
| 283 |
)
|
| 284 |
+
|
| 285 |
+
if __name__ == "__main__":
|
| 286 |
+
iface.launch()
|