Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,156 +1,118 @@
|
|
| 1 |
-
# import gradio as gr
|
| 2 |
-
# import pandas as pd
|
| 3 |
-
# from sentence_transformers import SentenceTransformer, util
|
| 4 |
-
|
| 5 |
-
# # Load files
|
| 6 |
-
# df = pd.read_excel("IslamWeb_output.xlsx")
|
| 7 |
-
# df2 = pd.read_excel("JordanFatwas_all.xlsx")
|
| 8 |
-
|
| 9 |
-
# # Validate
|
| 10 |
-
# for d, name in [(df, "IslamWeb"), (df2, "JordanFatwas")]:
|
| 11 |
-
# if not {"question", "link"}.issubset(d.columns):
|
| 12 |
-
# raise ValueError(f"❌ Missing required columns in {name}")
|
| 13 |
-
|
| 14 |
-
# # Load model + encode
|
| 15 |
-
# model = SentenceTransformer("paraphrase-multilingual-MiniLM-L12-v2")
|
| 16 |
-
# embeddings = model.encode(df["question"].fillna('').tolist(), convert_to_tensor=True)
|
| 17 |
-
# embeddings2 = model.encode(df2["question"].fillna('').tolist(), convert_to_tensor=True)
|
| 18 |
-
|
| 19 |
-
# # Define function
|
| 20 |
-
# def search_fatwa(query):
|
| 21 |
-
# query_embedding = model.encode(query, convert_to_tensor=True)
|
| 22 |
-
|
| 23 |
-
# scores = util.pytorch_cos_sim(query_embedding, embeddings)[0]
|
| 24 |
-
# top_idx = int(scores.argmax())
|
| 25 |
-
|
| 26 |
-
# scores2 = util.pytorch_cos_sim(query_embedding, embeddings2)[0]
|
| 27 |
-
# top_idx2 = int(scores2.argmax())
|
| 28 |
-
|
| 29 |
-
# return {
|
| 30 |
-
# "question1": df.iloc[top_idx]["question"],
|
| 31 |
-
# "link1": df.iloc[top_idx]["link"],
|
| 32 |
-
# "question2": df2.iloc[top_idx2]["question"],
|
| 33 |
-
# "link2": df2.iloc[top_idx2]["link"],
|
| 34 |
-
# }
|
| 35 |
-
|
| 36 |
-
# # Interface
|
| 37 |
-
# iface = gr.Interface(
|
| 38 |
-
# fn=search_fatwa,
|
| 39 |
-
# inputs="text",
|
| 40 |
-
# outputs="json",
|
| 41 |
-
# allow_flagging="never",
|
| 42 |
-
# title="Fatwa Search (Dual Source)",
|
| 43 |
-
# description="Get the most relevant fatwas from both datasets"
|
| 44 |
-
# )
|
| 45 |
-
|
| 46 |
-
# iface.launch()
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
# import torch
|
| 50 |
-
# import pandas as pd
|
| 51 |
-
# from sentence_transformers import SentenceTransformer, util
|
| 52 |
-
# import gradio as gr
|
| 53 |
-
|
| 54 |
-
# model = SentenceTransformer("paraphrase-multilingual-MiniLM-L12-v2")
|
| 55 |
-
# df = pd.read_csv("cleaned1.csv")
|
| 56 |
-
# df2 = pd.read_csv("cleaned2.csv")
|
| 57 |
-
# embeddings = torch.load("embeddings1.pt")
|
| 58 |
-
# embeddings2 = torch.load("embeddings2.pt")
|
| 59 |
-
|
| 60 |
-
# # def search_fatwa(data):
|
| 61 |
-
# # query = data[0] if data else ""
|
| 62 |
-
# # query_embedding = model.encode(query, convert_to_tensor=True)
|
| 63 |
-
# # top_idx = int(util.pytorch_cos_sim(query_embedding, embeddings)[0].argmax())
|
| 64 |
-
# # top_idx2 = int(util.pytorch_cos_sim(query_embedding, embeddings2)[0].argmax())
|
| 65 |
-
# # return {
|
| 66 |
-
# # "question1": df.iloc[top_idx]["question"],
|
| 67 |
-
# # "link1": df.iloc[top_idx]["link"],
|
| 68 |
-
# # "question2": df2.iloc[top_idx2]["question"],
|
| 69 |
-
# # "link2": df2.iloc[top_idx2]["link"]
|
| 70 |
-
# # }
|
| 71 |
-
|
| 72 |
-
# def search_fatwa(data):
|
| 73 |
-
# query = data[0] if isinstance(data, list) else data
|
| 74 |
-
# if not query:
|
| 75 |
-
# return {"question1": "", "link1": "", "question2": "", "link2": ""}
|
| 76 |
-
# query_embedding = model.encode(query, convert_to_tensor=True)
|
| 77 |
-
# top_idx = int(util.pytorch_cos_sim(query_embedding, embeddings)[0].argmax())
|
| 78 |
-
# top_idx2 = int(util.pytorch_cos_sim(query_embedding, embeddings2)[0].argmax())
|
| 79 |
-
# # return {
|
| 80 |
-
# # "question1": df.iloc[top_idx]["question"],
|
| 81 |
-
# # "link1": df.iloc[top_idx]["link"],
|
| 82 |
-
# # "question2": df2.iloc[top_idx2]["question"],
|
| 83 |
-
# # "link2": df2.iloc[top_idx2]["link"]
|
| 84 |
-
# # }
|
| 85 |
-
# result = f"""Question 1: {df.iloc[top_idx]["question"]}
|
| 86 |
-
# Link 1: {df.iloc[top_idx]["link"]}
|
| 87 |
-
|
| 88 |
-
# Question 2: {df2.iloc[top_idx2]["question"]}
|
| 89 |
-
# Link 2: {df2.iloc[top_idx2]["link"]}"""
|
| 90 |
-
# return result
|
| 91 |
-
|
| 92 |
-
# iface = gr.Interface(
|
| 93 |
-
# fn=search_fatwa,
|
| 94 |
-
# inputs=[gr.Textbox(label="text", lines=3)],
|
| 95 |
-
# outputs="text" # Changed from "json" to "text"
|
| 96 |
-
# )
|
| 97 |
-
|
| 98 |
-
# # iface = gr.Interface(fn=search_fatwa, inputs=[gr.Textbox(label="text", lines=3)], outputs="json")
|
| 99 |
-
|
| 100 |
-
|
| 101 |
-
|
| 102 |
-
|
| 103 |
-
# # iface = gr.Interface(
|
| 104 |
-
# # fn=predict,
|
| 105 |
-
# # inputs=[gr.Textbox(label="text", lines=3)],
|
| 106 |
-
# # outputs='text',
|
| 107 |
-
# # title=title,
|
| 108 |
-
# # )
|
| 109 |
-
|
| 110 |
-
# iface.launch()
|
| 111 |
-
|
| 112 |
-
|
| 113 |
import torch
|
| 114 |
import pandas as pd
|
| 115 |
from sentence_transformers import SentenceTransformer, util
|
| 116 |
import gradio as gr
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 117 |
|
| 118 |
-
model = SentenceTransformer("distilbert-base-multilingual-cased")
|
| 119 |
-
# model = SentenceTransformer("paraphrase-multilingual-MiniLM-L12-v2")
|
| 120 |
df = pd.read_csv("cleaned1.csv")
|
| 121 |
df2 = pd.read_csv("cleaned2.csv")
|
| 122 |
df3 = pd.read_csv("cleaned3.csv")
|
| 123 |
|
| 124 |
-
embeddings
|
| 125 |
-
|
| 126 |
-
|
| 127 |
-
|
| 128 |
-
|
| 129 |
-
|
| 130 |
-
|
| 131 |
-
|
| 132 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 133 |
df_questions = df["question"].values
|
| 134 |
df_links = df["link"].values
|
| 135 |
df2_questions = df2["question"].values
|
| 136 |
df2_links = df2["link"].values
|
| 137 |
df3_questions = df3["question"].values
|
| 138 |
df3_links = df3["url"].values
|
| 139 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 140 |
if not text or text.strip() == "":
|
| 141 |
return "No query provided"
|
| 142 |
|
| 143 |
-
|
|
|
|
| 144 |
|
| 145 |
-
#
|
| 146 |
-
|
| 147 |
-
sim_scores2 = util.pytorch_cos_sim(query_embedding, embeddings2)[0]
|
| 148 |
-
sim_scores3 = util.pytorch_cos_sim(query_embedding, embeddings3)[0]
|
| 149 |
|
| 150 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 151 |
top3_scores1, top3_idx1 = sim_scores1.topk(3)
|
| 152 |
top3_scores2, top3_idx2 = sim_scores2.topk(3)
|
| 153 |
top3_scores3, top3_idx3 = sim_scores3.topk(3)
|
|
|
|
| 154 |
# Convert to CPU once
|
| 155 |
top3_idx1_cpu = top3_idx1.cpu().numpy()
|
| 156 |
top3_idx2_cpu = top3_idx2.cpu().numpy()
|
|
@@ -159,7 +121,91 @@ def predict(text):
|
|
| 159 |
top3_scores1_cpu = top3_scores1.cpu().numpy()
|
| 160 |
top3_scores2_cpu = top3_scores2.cpu().numpy()
|
| 161 |
top3_scores3_cpu = top3_scores3.cpu().numpy()
|
| 162 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 163 |
results = {
|
| 164 |
|
| 165 |
"top2": [
|
|
@@ -190,12 +236,15 @@ def predict(text):
|
|
| 190 |
|
| 191 |
return results
|
| 192 |
|
| 193 |
-
#
|
| 194 |
-
title = "Search
|
| 195 |
iface = gr.Interface(
|
| 196 |
-
fn=
|
| 197 |
-
inputs=[gr.Textbox(label="
|
| 198 |
outputs='json',
|
| 199 |
title=title,
|
|
|
|
| 200 |
)
|
| 201 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import torch
|
| 2 |
import pandas as pd
|
| 3 |
from sentence_transformers import SentenceTransformer, util
|
| 4 |
import gradio as gr
|
| 5 |
+
import numpy as np
|
| 6 |
+
from transformers import MarianMTModel, MarianTokenizer
|
| 7 |
+
import re
|
| 8 |
+
|
| 9 |
+
translator_model_name = "Helsinki-NLP/opus-mt-en-ar"
|
| 10 |
+
translator_tokenizer = MarianTokenizer.from_pretrained(translator_model_name)
|
| 11 |
+
translator_model = MarianMTModel.from_pretrained(translator_model_name)
|
| 12 |
+
|
| 13 |
+
models = [
|
| 14 |
+
SentenceTransformer("paraphrase-multilingual-MiniLM-L12-v2"),
|
| 15 |
+
SentenceTransformer("distilbert-base-multilingual-cased"),
|
| 16 |
+
SentenceTransformer("sentence-transformers/paraphrase-multilingual-mpnet-base-v2")
|
| 17 |
+
]
|
| 18 |
+
|
| 19 |
|
|
|
|
|
|
|
| 20 |
df = pd.read_csv("cleaned1.csv")
|
| 21 |
df2 = pd.read_csv("cleaned2.csv")
|
| 22 |
df3 = pd.read_csv("cleaned3.csv")
|
| 23 |
|
| 24 |
+
# Load embeddings for each model - match embeddings to their corresponding models
|
| 25 |
+
embeddings_list = [
|
| 26 |
+
torch.load("embeddings1.pt"), # Model 1 embeddings (distilbert-base-multilingual-cased)
|
| 27 |
+
torch.load("embeddings1_1.pt"), # Model 2 embeddings (paraphrase-multilingual-MiniLM-L12-v2)
|
| 28 |
+
torch.load("embeddings1_2.pt") # Model 3 embeddings (paraphrase-multilingual-mpnet-base-v2)
|
| 29 |
+
]
|
| 30 |
+
|
| 31 |
+
embeddings2_list = [
|
| 32 |
+
torch.load("embeddings2.pt"), # Model 1 embeddings
|
| 33 |
+
torch.load("embeddings2_1.pt"), # Model 2 embeddings
|
| 34 |
+
torch.load("embeddings2_2.pt") # Model 3 embeddings
|
| 35 |
+
]
|
| 36 |
+
|
| 37 |
+
embeddings3_list = [
|
| 38 |
+
torch.load("embeddings3.pt"), # Model 1 embeddings
|
| 39 |
+
torch.load("embeddings3_1.pt"), # Model 2 embeddings
|
| 40 |
+
torch.load("embeddings3_2.pt") # Model 3 embeddings
|
| 41 |
+
]
|
| 42 |
+
|
| 43 |
+
# Pre-extract DataFrame columns
|
| 44 |
df_questions = df["question"].values
|
| 45 |
df_links = df["link"].values
|
| 46 |
df2_questions = df2["question"].values
|
| 47 |
df2_links = df2["link"].values
|
| 48 |
df3_questions = df3["question"].values
|
| 49 |
df3_links = df3["url"].values
|
| 50 |
+
|
| 51 |
+
def is_arabic(text):
|
| 52 |
+
"""Check if text contains Arabic characters"""
|
| 53 |
+
arabic_pattern = re.compile(r'[\u0600-\u06FF\u0750-\u077F\u08A0-\u08FF]')
|
| 54 |
+
return bool(arabic_pattern.search(text))
|
| 55 |
+
|
| 56 |
+
def translate_to_arabic(text):
|
| 57 |
+
"""Translate English text to Arabic"""
|
| 58 |
+
if is_arabic(text):
|
| 59 |
+
return text # Already Arabic, no translation needed
|
| 60 |
+
|
| 61 |
+
try:
|
| 62 |
+
# Tokenize and translate
|
| 63 |
+
inputs = translator_tokenizer(text, return_tensors="pt", padding=True, truncation=True, max_length=512)
|
| 64 |
+
translated = translator_model.generate(**inputs, max_length=512, num_beams=4, early_stopping=True)
|
| 65 |
+
arabic_text = translator_tokenizer.decode(translated[0], skip_special_tokens=True)
|
| 66 |
+
return arabic_text
|
| 67 |
+
except Exception as e:
|
| 68 |
+
print(f"Translation error: {e}")
|
| 69 |
+
return text # Return original text if translation fails
|
| 70 |
+
|
| 71 |
+
def fast_ensemble_similarity(query_text, embeddings_list, models, weights=None):
|
| 72 |
+
"""
|
| 73 |
+
Fast ensemble similarity calculation - matches each model with its correct embeddings
|
| 74 |
+
"""
|
| 75 |
+
if weights is None:
|
| 76 |
+
weights = [1.0] * len(models)
|
| 77 |
+
|
| 78 |
+
all_scores = []
|
| 79 |
+
|
| 80 |
+
for i, (model, embeddings, weight) in enumerate(zip(models, embeddings_list, weights)):
|
| 81 |
+
# Each model uses its corresponding embeddings
|
| 82 |
+
query_embedding = model.encode(query_text, convert_to_tensor=True)
|
| 83 |
+
sim_scores = util.pytorch_cos_sim(query_embedding, embeddings)[0]
|
| 84 |
+
weighted_scores = sim_scores * weight
|
| 85 |
+
all_scores.append(weighted_scores)
|
| 86 |
+
|
| 87 |
+
# Combine scores efficiently
|
| 88 |
+
ensemble_scores = torch.stack(all_scores).mean(dim=0)
|
| 89 |
+
return ensemble_scores
|
| 90 |
+
|
| 91 |
+
def predict_with_translation(text):
|
| 92 |
+
"""Fast prediction with translation support - correctly matches models with embeddings"""
|
| 93 |
if not text or text.strip() == "":
|
| 94 |
return "No query provided"
|
| 95 |
|
| 96 |
+
# Translate to Arabic if needed
|
| 97 |
+
arabic_text = translate_to_arabic(text)
|
| 98 |
|
| 99 |
+
# Model weights - adjust based on your testing
|
| 100 |
+
model_weights = [0.35, 0.4, 0.25]
|
|
|
|
|
|
|
| 101 |
|
| 102 |
+
# Choose which text to use for search
|
| 103 |
+
search_text = arabic_text if arabic_text != text else text
|
| 104 |
+
|
| 105 |
+
# Fast ensemble similarity calculation for each dataset
|
| 106 |
+
# Each model now uses its correct corresponding embeddings
|
| 107 |
+
sim_scores1 = fast_ensemble_similarity(search_text, embeddings_list, models, model_weights)
|
| 108 |
+
sim_scores2 = fast_ensemble_similarity(search_text, embeddings2_list, models, model_weights)
|
| 109 |
+
sim_scores3 = fast_ensemble_similarity(search_text, embeddings3_list, models, model_weights)
|
| 110 |
+
|
| 111 |
+
# Get top 3 results efficiently
|
| 112 |
top3_scores1, top3_idx1 = sim_scores1.topk(3)
|
| 113 |
top3_scores2, top3_idx2 = sim_scores2.topk(3)
|
| 114 |
top3_scores3, top3_idx3 = sim_scores3.topk(3)
|
| 115 |
+
|
| 116 |
# Convert to CPU once
|
| 117 |
top3_idx1_cpu = top3_idx1.cpu().numpy()
|
| 118 |
top3_idx2_cpu = top3_idx2.cpu().numpy()
|
|
|
|
| 121 |
top3_scores1_cpu = top3_scores1.cpu().numpy()
|
| 122 |
top3_scores2_cpu = top3_scores2.cpu().numpy()
|
| 123 |
top3_scores3_cpu = top3_scores3.cpu().numpy()
|
| 124 |
+
|
| 125 |
+
# Format results
|
| 126 |
+
results = {
|
| 127 |
+
"top2": [
|
| 128 |
+
{
|
| 129 |
+
"question": df2_questions[idx],
|
| 130 |
+
"link": df2_links[idx],
|
| 131 |
+
"score": float(score)
|
| 132 |
+
}
|
| 133 |
+
for idx, score in zip(top3_idx2_cpu, top3_scores2_cpu)
|
| 134 |
+
],
|
| 135 |
+
"top3": [
|
| 136 |
+
{
|
| 137 |
+
"question": df3_questions[idx],
|
| 138 |
+
"link": df3_links[idx],
|
| 139 |
+
"score": float(score)
|
| 140 |
+
}
|
| 141 |
+
for idx, score in zip(top3_idx3_cpu, top3_scores3_cpu)
|
| 142 |
+
],
|
| 143 |
+
"top1": [
|
| 144 |
+
{
|
| 145 |
+
"question": df_questions[idx],
|
| 146 |
+
"link": df_links[idx],
|
| 147 |
+
"score": float(score)
|
| 148 |
+
}
|
| 149 |
+
for idx, score in zip(top3_idx1_cpu, top3_scores1_cpu)
|
| 150 |
+
],
|
| 151 |
+
}
|
| 152 |
+
|
| 153 |
+
return results
|
| 154 |
+
|
| 155 |
+
|
| 156 |
+
# Alternative version with dynamic model loading (saves memory)
|
| 157 |
+
def predict_dynamic(text):
|
| 158 |
+
"""
|
| 159 |
+
Alternative approach: encode with multiple models on-the-fly
|
| 160 |
+
Uses more computation but less memory
|
| 161 |
+
"""
|
| 162 |
+
if not text or text.strip() == "":
|
| 163 |
+
return "No query provided"
|
| 164 |
+
|
| 165 |
+
# Load your original embeddings (generated with first model)
|
| 166 |
+
embeddings1 = torch.load("embeddings1_1.pt")
|
| 167 |
+
embeddings2 = torch.load("embeddings2_1.pt")
|
| 168 |
+
embeddings3 = torch.load("embeddings3_1.pt")
|
| 169 |
+
|
| 170 |
+
model_weights = [0.4, 0.35, 0.25]
|
| 171 |
+
|
| 172 |
+
# Calculate ensemble scores for each dataset
|
| 173 |
+
all_sim_scores1 = []
|
| 174 |
+
all_sim_scores2 = []
|
| 175 |
+
all_sim_scores3 = []
|
| 176 |
+
|
| 177 |
+
for i, model in enumerate(models):
|
| 178 |
+
query_embedding = model.encode(text, convert_to_tensor=True)
|
| 179 |
+
|
| 180 |
+
# For this example, using same embeddings for all models
|
| 181 |
+
# In practice, you'd want different embeddings for each model
|
| 182 |
+
sim1 = util.pytorch_cos_sim(query_embedding, embeddings1)[0] * model_weights[i]
|
| 183 |
+
sim2 = util.pytorch_cos_sim(query_embedding, embeddings2)[0] * model_weights[i]
|
| 184 |
+
sim3 = util.pytorch_cos_sim(query_embedding, embeddings3)[0] * model_weights[i]
|
| 185 |
+
|
| 186 |
+
all_sim_scores1.append(sim1)
|
| 187 |
+
all_sim_scores2.append(sim2)
|
| 188 |
+
all_sim_scores3.append(sim3)
|
| 189 |
+
|
| 190 |
+
# Combine scores
|
| 191 |
+
final_scores1 = torch.stack(all_sim_scores1).mean(dim=0)
|
| 192 |
+
final_scores2 = torch.stack(all_sim_scores2).mean(dim=0)
|
| 193 |
+
final_scores3 = torch.stack(all_sim_scores3).mean(dim=0)
|
| 194 |
+
|
| 195 |
+
# Get top results
|
| 196 |
+
top3_scores1, top3_idx1 = final_scores1.topk(3)
|
| 197 |
+
top3_scores2, top3_idx2 = final_scores2.topk(3)
|
| 198 |
+
top3_scores3, top3_idx3 = final_scores3.topk(3)
|
| 199 |
+
|
| 200 |
+
# Convert and format results (same as before)
|
| 201 |
+
top3_idx1_cpu = top3_idx1.cpu().numpy()
|
| 202 |
+
top3_idx2_cpu = top3_idx2.cpu().numpy()
|
| 203 |
+
top3_idx3_cpu = top3_idx3.cpu().numpy()
|
| 204 |
+
|
| 205 |
+
top3_scores1_cpu = top3_scores1.cpu().numpy()
|
| 206 |
+
top3_scores2_cpu = top3_scores2.cpu().numpy()
|
| 207 |
+
top3_scores3_cpu = top3_scores3.cpu().numpy()
|
| 208 |
+
|
| 209 |
results = {
|
| 210 |
|
| 211 |
"top2": [
|
|
|
|
| 236 |
|
| 237 |
return results
|
| 238 |
|
| 239 |
+
# Create Gradio interface
|
| 240 |
+
title = "Enhanced Multi-Model Search with Translation"
|
| 241 |
iface = gr.Interface(
|
| 242 |
+
fn=predict_with_translation, # Use the new function with translation
|
| 243 |
+
inputs=[gr.Textbox(label="Enter your question (English or Arabic)", lines=3)],
|
| 244 |
outputs='json',
|
| 245 |
title=title,
|
| 246 |
+
description="Ask questions in English or Arabic. English queries will be translated to Arabic for better matching."
|
| 247 |
)
|
| 248 |
+
|
| 249 |
+
if __name__ == "__main__":
|
| 250 |
+
iface.launch()
|