# import from tensorflow.python.keras.utils.generic_utils import default import streamlit as st from newspaper import Article from transformers import pipeline st.set_page_config(layout="wide", page_title="SummarizeLink") # load the summarization model @st.cache(allow_output_mutation=True) def load_summarize_model(): # model = pipeline("summarization", model='sshleifer/distilbart-cnn-12-6') model = pipeline("summarization") return model summ = load_summarize_model() # define functions def download_and_parse_article(url): article = Article(url) article.download() article.parse() return article.text # define the app st.title("SummarizeLink") st.text("Paste any article link below and click on the 'Summarize Text' button to get the summarized data") # st.subheader("This application is using HuggingFace's transformers pre-trained model for text summarization.") link = st.text_area('Paste your link here...', "https://towardsdatascience.com/a-guide-to-the-knowledge-graphs-bfb5c40272f1", height=50) button = st.button("Summarize") max_lengthy = st.sidebar.slider('Max summary length', min_value=30, max_value=700, value=100, step=10) # num_beamer = st.sidebar.slider('Speed vs quality of Summary (1 is fastest but less accurate)', min_value=1, max_value=8, value=4, step=1) with st.spinner("Summarizing..."): if button and link: text = download_and_parse_article(link) # get the text summary = summ(text, truncation=True, max_length = max_lengthy, min_length = 50, num_beams=5, do_sample=True, early_stopping=True, repetition_penalty=1.5, length_penalty=1.5)[0] st.write(summary['summary_text'])