File size: 10,365 Bytes
27eb7af
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a66797c
27eb7af
 
 
a66797c
27eb7af
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
import json, re
import operator
from itertools import chain
from pathlib import Path
from dotenv import load_dotenv
from datetime import datetime
from typing import List, Dict, Any, TypedDict, Annotated, Optional

from langgraph.graph import StateGraph, END
from langchain_core.messages import AnyMessage, SystemMessage, ToolMessage, HumanMessage, AIMessage
from langchain_core.language_models import BaseLanguageModel
from langchain_core.tools import BaseTool
from langchain_core.prompts import ChatPromptTemplate
from langchain_core.output_parsers import StrOutputParser

_ = load_dotenv()


class ToolCallLog(TypedDict):
    """
    A TypedDict representing a log entry for a tool call.

    Attributes:
        timestamp (str): The timestamp of when the tool call was made.
        tool_call_id (str): The unique identifier for the tool call.
        name (str): The name of the tool that was called.
        args (Any): The arguments passed to the tool.
        content (str): The content or result of the tool call.
    """

    timestamp: str
    tool_call_id: str
    name: str
    args: Any
    content: str


class AgentState(TypedDict):
    """
    A TypedDict representing the state of an agent.

    Attributes:
        messages (Annotated[List[AnyMessage], operator.add]): A list of messages
            representing the conversation history. The operator.add annotation
            indicates that new messages should be appended to this list.
    """

    messages: Annotated[List[AnyMessage], operator.add]


class ChatAgent:
    """
    A class representing an agent that processes requests and executes tools based on
    language model responses.

    Attributes:
        model (BaseLanguageModel): The language model used for processing.
        tools (Dict[str, BaseTool]): A dictionary of available tools.
        checkpointer (Any): Manages and persists the agent's state.
        system_prompt (str): The system instructions for the agent.
        workflow (StateGraph): The compiled workflow for the agent's processing.
        log_tools (bool): Whether to log tool calls.
        log_path (Path): Path to save tool call logs.
    """

    def __init__(
        self,
        model: BaseLanguageModel,
        tools: List[BaseTool],
        checkpointer: Any = None,
        prompts: Dict[str, str] = {},
        log_tools: bool = True,
        log_dir: Optional[str] = "logs",
    ):
        """
        Initialize the Agent.

        Args:
            model (BaseLanguageModel): The language model to use.
            tools (List[BaseTool]): A list of available tools.
            checkpointer (Any, optional): State persistence manager. Defaults to None.
            prompts (Dict[str, str], optional): System instructions. Defaults to {}.
            log_tools (bool, optional): Whether to log tool calls. Defaults to True.
            log_dir (str, optional): Directory to save logs. Defaults to 'logs'.
        """
        self.prompts = prompts
        self.log_tools = log_tools
        self.checkpointer = checkpointer

        if self.log_tools:
            self.log_path = Path(log_dir or "logs")
            self.log_path.mkdir(exist_ok=True)

        # Define the agent workflow
        workflow = StateGraph(AgentState)
        workflow.add_node("process", self.process_request)
        workflow.add_node("execute", self.execute_tools)
        workflow.add_node("summarize", self.summarize_message)
        workflow.add_conditional_edges(
            "process", self.has_tool_calls, {True: "execute", False: END}
        )
        workflow.add_edge("execute", "process")
        workflow.set_entry_point("process")

        self.workflow = workflow.compile(checkpointer=self.checkpointer)
        self.tools = {t.name: t for t in tools}
        self.model = model.bind_tools(tools)

    def process_request(self, state: AgentState) -> Dict[str, List[AnyMessage]]:
        """
        Process the request using the language model.

        Args:
            state (AgentState): The current state of the agent.

        Returns:
            Dict[str, List[AnyMessage]]: A dictionary containing the model's response.
        """
        messages = state["messages"]
        # print('process_request input', state)
        if self.prompts:
            messages = [SystemMessage(content=self.prompts["MEDICAL_ASSISTANT"])] + messages
        response = self.model.invoke(messages)
        # print('process_request output', response)
        return {"messages": [response]}

    def has_tool_calls(self, state: AgentState) -> bool:
        """
        Check if the response contains any tool calls.

        Args:
            state (AgentState): The current state of the agent.

        Returns:
            bool: True if tool calls exist, False otherwise.
        """
        response = state["messages"][-1]
        return len(response.tool_calls) > 0

    def execute_tools(self, state: AgentState) -> Dict[str, List[ToolMessage]]:
        """
        Execute tool calls from the model's response.

        Args:
            state (AgentState): The current state of the agent.

        Returns:
            Dict[str, List[ToolMessage]]: A dictionary containing tool execution results.
        """
        tool_calls = state["messages"][-1].tool_calls
        results = []

        for call in tool_calls:
            # print(f"Executing tool: {call}")
            if call["name"] not in self.tools:
                print("\n....invalid tool....")
                result = "invalid tool, please retry"
            else:
                result = self.tools[call["name"]].invoke(call["args"])

            results.append(
                ToolMessage(
                    tool_call_id=call["id"],
                    name=call["name"],
                    args=call["args"],
                    content=str(result),
                )
            )

        self._save_tool_calls(results)
        print("Returning to model processing!")
        
        return {"messages": results}
    
    def summarize_message(self, thread_id: str):
        """
        Summarize the previous messages using the language model.

        Args:
            state (AgentState): The current state of the agent.

        Returns:
            Dict[str, List[AnyMessage]]: A dictionary containing the model's response.
        """
        # history = list(self.workflow.get_state_history({"configurable": {"thread_id": thread_id}}))
        history = self.workflow.get_state({"configurable": {"thread_id": thread_id}})

        # all_messages = list(
        #     chain.from_iterable(
        #         snap.values.get("messages", []) for snap in reversed(history)
        #     )
        # )

        all_messages = history.values["messages"]
        # print(all_messages)
        chat_messages = [
            {
                "type": "Tool message",
                "tool_name": m.name,
                "content":  m.content   
            }
            for m in all_messages
            if isinstance(m, ToolMessage)
        ]

        summarize_prompt = ChatPromptTemplate.from_messages([
            ("system", self.prompts["SUMMARIZE_SYSTEM_PROMPT"]),
            ("human",  self.prompts["SUMMARIZE_USER_PROMPT"])
        ])

        llm_chain = summarize_prompt | self.model | StrOutputParser()
        llm_output = llm_chain.invoke({"chat_messages": chat_messages})

        cleaned_output = re.sub(r"```(?:json)?", "", llm_output, flags=re.IGNORECASE).strip()
        return json.loads(cleaned_output)

        # print(result_json)
        # return result_json

    def _save_tool_calls(self, tool_calls: List[ToolMessage]) -> None:
        """
        Save tool calls to a JSON file with timestamp-based naming.

        Args:
            tool_calls (List[ToolMessage]): List of tool calls to save.
        """
        if not self.log_tools:
            return

        timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
        filename = self.log_path / f"tool_calls_{timestamp}.json"

        logs: List[ToolCallLog] = []
        for call in tool_calls:
            log_entry = {
                "tool_call_id": call.tool_call_id,
                "name": call.name,
                "args": call.args,
                "content": call.content,
                "timestamp": datetime.now().isoformat(),
            }
            logs.append(log_entry)

        with open(filename, "w") as f:
            json.dump(logs, f, indent=4)

    def normalise_messages(self, raw: List[Any]) -> List[Dict[str, Any]]:
        """Turn mixed LangGraph snapshots into a uniform list of dicts."""
        out: List[Dict[str, Any]] = []

        for m in raw:
            # ── LangChain message objects ──────────────────────────────
            if isinstance(m, HumanMessage):
                out.append({"role": "human", "content": m.content})
            elif isinstance(m, AIMessage):
                out.append({"role": "ai", "content": m.content})
            elif isinstance(m, ToolMessage):
                out.append(
                    {
                        "role": "tool",
                        "name": m.name,          # e.g. "chest_xray_classifier"
                        "content": m.content,
                    }
                )
            elif isinstance(m, SystemMessage):
                out.append({"role": "system", "content": m.content})

            # ── Bare dicts coming from the client / snapshots ──────────
            elif isinstance(m, dict):
                role = m.get("role")
                payload = m.get("content")
                # content might be a list of blocks (e.g. [{"type":"text","text":"hello"}])
                if isinstance(payload, list):
                    # keep the raw structure or flatten text blocks:
                    text_only = " ".join(
                        blk["text"] for blk in payload if blk.get("type") == "text"
                    )
                    payload = text_only if text_only else payload
                out.append({"role": role, "content": payload})

            # ── Fallback: stringify anything unknown ──────────────────
            else:
                out.append({"role": "unknown", "content": str(m)})

        return out