File size: 11,973 Bytes
57276d4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
import gradio as gr
import torch
import os
import numpy as np
import cv2
from PIL import Image
import open3d as o3d
import shutil

# --- Model Classes (adapted from demo scripts) ---

# Panorama Generation
from hy3dworld import Text2PanoramaPipelines, Image2PanoramaPipelines, Perspective

class Text2PanoramaDemo:
    def __init__(self):
        self.pipe = Text2PanoramaPipelines.from_pretrained(
            "black-forest-labs/FLUX.1-dev",
            torch_dtype=torch.bfloat16
        ).to("cuda")
        self.pipe.load_lora_weights(
            "tencent/HunyuanWorld-1",
            subfolder="HunyuanWorld-PanoDiT-Text",
            weight_name="lora.safetensors",
            torch_dtype=torch.bfloat16
        )
        self.pipe.enable_model_cpu_offload()
        self.pipe.enable_vae_tiling()

    def run(self, prompt, negative_prompt, seed, height, width, guidance_scale, steps):
        image = self.pipe(
            prompt,
            height=height,
            width=width,
            negative_prompt=negative_prompt,
            generator=torch.Generator("cuda").manual_seed(seed),
            num_inference_steps=steps,
            guidance_scale=guidance_scale,
            blend_extend=6,
            true_cfg_scale=0.0,
        ).images[0]
        return image

class Image2PanoramaDemo:
    def __init__(self):
        self.pipe = Image2PanoramaPipelines.from_pretrained(
            "black-forest-labs/FLUX.1-dev",
            torch_dtype=torch.bfloat16
        ).to("cuda")
        self.pipe.load_lora_weights(
            "tencent/HunyuanWorld-1",
            subfolder="HunyuanWorld-PanoDiT-Image",
            weight_name="lora.safetensors",
            torch_dtype=torch.bfloat16
        )
        self.pipe.enable_model_cpu_offload()
        self.pipe.enable_vae_tiling()
        self.general_negative_prompt = "human, person, people, messy, low-quality, blur, noise, low-resolution"
        self.general_positive_prompt = "high-quality, high-resolution, sharp, clear, 8k"

    def run(self, prompt, negative_prompt, image, seed, height, width, guidance_scale, steps, fov):
        prompt = prompt + ", " + self.general_positive_prompt
        negative_prompt = self.general_negative_prompt + ", " + negative_prompt
        
        perspective_img = np.array(image)
        height_fov, width_fov = perspective_img.shape[:2]
        ratio = width_fov / height_fov
        w = int((fov / 360) * width)
        h = int(w / ratio)
        perspective_img = cv2.resize(perspective_img, (w, h), interpolation=cv2.INTER_AREA)

        equ = Perspective(perspective_img, fov, 0, 0, crop_bound=False)
        img, mask = equ.GetEquirec(height, width)
        mask = cv2.erode(mask.astype(np.uint8), np.ones((3, 3), np.uint8), iterations=5)
        img = img * mask
        mask = 255 - (mask.astype(np.uint8) * 255)
        mask = Image.fromarray(mask[:, :, 0])
        img = Image.fromarray(cv2.cvtColor(img.astype(np.uint8), cv2.COLOR_BGR2RGB))

        image = self.pipe(
            prompt=prompt, image=img, mask_image=mask, height=height, width=width,
            negative_prompt=negative_prompt, guidance_scale=guidance_scale, num_inference_steps=steps,
            generator=torch.Generator("cuda").manual_seed(seed), blend_extend=6, shifting_extend=0, true_cfg_scale=2.0,
        ).images[0]
        return image

# Scene Generation
from hy3dworld import LayerDecomposition, WorldComposer, process_file

class HYworldDemo:
    def __init__(self, seed=42):
        target_size = 3840
        kernel_scale = max(1, int(target_size / 1920))
        self.LayerDecomposer = LayerDecomposition()
        self.hy3d_world = WorldComposer(
            device=torch.device("cuda"), resolution=(target_size, target_size // 2),
            seed=seed, filter_mask=True, kernel_scale=kernel_scale,
        )

    def run(self, image_path, labels_fg1, labels_fg2, classes, output_dir):
        os.makedirs(output_dir, exist_ok=True)
        fg1_infos = [{"image_path": image_path, "output_path": output_dir, "labels": labels_fg1, "class": classes}]
        fg2_infos = [{"image_path": os.path.join(output_dir, 'remove_fg1_image.png'), "output_path": output_dir, "labels": labels_fg2, "class": classes}]

        self.LayerDecomposer(fg1_infos, layer=0)
        self.LayerDecomposer(fg2_infos, layer=1)
        self.LayerDecomposer(fg2_infos, layer=2)
        separate_pano, fg_bboxes = self.hy3d_world._load_separate_pano_from_dir(output_dir, sr=True)
        layered_world_mesh = self.hy3d_world.generate_world(separate_pano=separate_pano, fg_bboxes=fg_bboxes, world_type='mesh')

        mesh_files = []
        for layer_idx, layer_info in enumerate(layered_world_mesh):
            output_path = os.path.join(output_dir, f"mesh_layer{layer_idx}.ply")
            o3d.io.write_triangle_mesh(output_path, layer_info['mesh'])
            mesh_files.append(output_path)
        return mesh_files

# --- Gradio UI ---

# Instantiate models
t2p_demo = Text2PanoramaDemo()
i2p_demo = Image2PanoramaDemo()
hy_demo = HYworldDemo()

def generate_text_to_pano(prompt, neg_prompt, seed, height, width, scale, steps):
    image = t2p_demo.run(prompt, neg_prompt, seed, height, width, scale, steps)
    # Save to a temporary file to pass to the next stage
    temp_dir = "temp_outputs"
    os.makedirs(temp_dir, exist_ok=True)
    temp_path = os.path.join(temp_dir, f"pano_{seed}.png")
    image.save(temp_path)
    return image, temp_path

def generate_image_to_pano(prompt, neg_prompt, image, seed, height, width, scale, steps, fov):
    pil_image = Image.fromarray(image)
    result_image = i2p_demo.run(prompt, neg_prompt, pil_image, seed, height, width, scale, steps, fov)
    temp_dir = "temp_outputs"
    os.makedirs(temp_dir, exist_ok=True)
    temp_path = os.path.join(temp_dir, f"pano_i2p_{seed}.png")
    result_image.save(temp_path)
    return result_image, temp_path

def generate_scene(panorama_file_path, fg1, fg2, classes, seed):
    if panorama_file_path is None or not os.path.exists(panorama_file_path):
        raise gr.Error("Please generate or upload a panorama image first.")
    output_dir = f"output_scene_{seed}"
    shutil.rmtree(output_dir, ignore_errors=True)
    labels_fg1 = [label.strip() for label in fg1.split(',') if label.strip()]
    labels_fg2 = [label.strip() for label in fg2.split(',') if label.strip()]
    mesh_files = hy_demo.run(panorama_file_path, labels_fg1, labels_fg2, classes, output_dir)
    
    # For now, let's just display the first layer. Gradio's Model3D doesn't support multiple files well.
    # A better UI might zip and offer for download, or show multiple viewers.
    return mesh_files[0] if mesh_files else None

css = """
#col-container {margin-left: auto; margin-right: auto;}
#pano_output {min-height: 320px;}
#scene_output {min-height: 480px;}
"""

with gr.Blocks(css=css, theme=gr.themes.Soft()) as demo:
    gr.Markdown("<h1>HunyuanWorld-1.0: A One-Stop Solution for Text-driven 3D Scene Generation</h1>")
    gr.Markdown("Official Repo: [Tencent-Hunyuan/HunyuanWorld-1.0](https://github.com/Tencent-Hunyuan/HunyuanWorld-1.0)")

    # State to hold the path of the generated panorama
    panorama_path_state = gr.State(None)

    with gr.Tabs():
        with gr.TabItem("Step 1: Panorama Generation"):
            with gr.Row():
                with gr.Column():
                    with gr.Tabs():
                        with gr.TabItem("Text-to-Panorama") as t2p_tab:
                            t2p_prompt = gr.Textbox(label="Prompt", value="A beautiful sunset over a mountain range, fantasy style")
                            t2p_neg_prompt = gr.Textbox(label="Negative Prompt", value="blurry, low quality")
                            t2p_seed = gr.Slider(label="Seed", minimum=0, maximum=10000, step=1, value=42)
                            with gr.Accordion("Advanced Settings", open=False):
                                t2p_height = gr.Slider(label="Height", minimum=512, maximum=1024, step=64, value=960)
                                t2p_width = gr.Slider(label="Width", minimum=1024, maximum=2048, step=128, value=1920)
                                t2p_scale = gr.Slider(label="Guidance Scale", minimum=1, maximum=50, step=1, value=30)
                                t2p_steps = gr.Slider(label="Inference Steps", minimum=10, maximum=100, step=5, value=50)
                            t2p_button = gr.Button("Generate Panorama", variant="primary")

                        with gr.TabItem("Image-to-Panorama") as i2p_tab:
                            i2p_image = gr.Image(type="numpy", label="Input Image")
                            i2p_prompt = gr.Textbox(label="Prompt", value="A photo of a room, modern design")
                            i2p_neg_prompt = gr.Textbox(label="Negative Prompt", value="watermark, text")
                            i2p_seed = gr.Slider(label="Seed", minimum=0, maximum=10000, step=1, value=100)
                            with gr.Accordion("Advanced Settings", open=False):
                                i2p_fov = gr.Slider(label="Field of View (FOV)", minimum=40, maximum=120, step=5, value=80)
                                i2p_height = gr.Slider(label="Height", minimum=512, maximum=1024, step=64, value=960)
                                i2p_width = gr.Slider(label="Width", minimum=1024, maximum=2048, step=128, value=1920)
                                i2p_scale = gr.Slider(label="Guidance Scale", minimum=1, maximum=50, step=1, value=30)
                                i2p_steps = gr.Slider(label="Inference Steps", minimum=10, maximum=100, step=5, value=50)
                            i2p_button = gr.Button("Generate Panorama", variant="primary")
                
                with gr.Column():
                    pano_output = gr.Image(label="Panorama Output", elem_id="pano_output")
                    send_to_scene_btn = gr.Button("Step 2: Send to Scene Generation")
        
        with gr.TabItem("Step 2: Scene Generation") as scene_tab:
            with gr.Row():
                with gr.Column():
                    gr.Markdown("Load the panorama generated in Step 1, or upload your own.")
                    scene_input_image = gr.Image(type="filepath", label="Input Panorama")
                    scene_classes = gr.Radio(["outdoor", "indoor"], label="Scene Class", value="outdoor")
                    scene_fg1 = gr.Textbox(label="Foreground Labels (Layer 1)", placeholder="e.g., tree, car, person")
                    scene_fg2 = gr.Textbox(label="Foreground Labels (Layer 2)", placeholder="e.g., building, mountain")
                    scene_seed = gr.Slider(label="Seed", minimum=0, maximum=10000, step=1, value=2024)
                    scene_button = gr.Button("Generate 3D Scene", variant="primary")
                with gr.Column():
                    scene_output = gr.Model3D(label="3D Scene Output (.ply)", elem_id="scene_output")

    # Wire up components
    t2p_button.click(
        fn=generate_text_to_pano,
        inputs=[t2p_prompt, t2p_neg_prompt, t2p_seed, t2p_height, t2p_width, t2p_scale, t2p_steps],
        outputs=[pano_output, panorama_path_state]
    )
    i2p_button.click(
        fn=generate_image_to_pano,
        inputs=[i2p_prompt, i2p_neg_prompt, i2p_image, i2p_seed, i2p_height, i2p_width, i2p_scale, i2p_steps, i2p_fov],
        outputs=[pano_output, panorama_path_state]
    )

    def transfer_to_scene_gen(path):
        return {scene_input_image: gr.update(value=path)}

    send_to_scene_btn.click(
        fn=lambda path: path, 
        inputs=panorama_path_state,
        outputs=scene_input_image
    ).then(
        lambda: gr.Tabs.update(selected=scene_tab),
        outputs=demo.children[1] # This is a bit of a hack to select the tab
    )

    scene_button.click(
        fn=generate_scene,
        inputs=[scene_input_image, scene_fg1, scene_fg2, scene_classes, scene_seed],
        outputs=scene_output
    )

demo.queue().launch(debug=True)