Spaces:
Build error
Build error
File size: 11,973 Bytes
57276d4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 |
import gradio as gr
import torch
import os
import numpy as np
import cv2
from PIL import Image
import open3d as o3d
import shutil
# --- Model Classes (adapted from demo scripts) ---
# Panorama Generation
from hy3dworld import Text2PanoramaPipelines, Image2PanoramaPipelines, Perspective
class Text2PanoramaDemo:
def __init__(self):
self.pipe = Text2PanoramaPipelines.from_pretrained(
"black-forest-labs/FLUX.1-dev",
torch_dtype=torch.bfloat16
).to("cuda")
self.pipe.load_lora_weights(
"tencent/HunyuanWorld-1",
subfolder="HunyuanWorld-PanoDiT-Text",
weight_name="lora.safetensors",
torch_dtype=torch.bfloat16
)
self.pipe.enable_model_cpu_offload()
self.pipe.enable_vae_tiling()
def run(self, prompt, negative_prompt, seed, height, width, guidance_scale, steps):
image = self.pipe(
prompt,
height=height,
width=width,
negative_prompt=negative_prompt,
generator=torch.Generator("cuda").manual_seed(seed),
num_inference_steps=steps,
guidance_scale=guidance_scale,
blend_extend=6,
true_cfg_scale=0.0,
).images[0]
return image
class Image2PanoramaDemo:
def __init__(self):
self.pipe = Image2PanoramaPipelines.from_pretrained(
"black-forest-labs/FLUX.1-dev",
torch_dtype=torch.bfloat16
).to("cuda")
self.pipe.load_lora_weights(
"tencent/HunyuanWorld-1",
subfolder="HunyuanWorld-PanoDiT-Image",
weight_name="lora.safetensors",
torch_dtype=torch.bfloat16
)
self.pipe.enable_model_cpu_offload()
self.pipe.enable_vae_tiling()
self.general_negative_prompt = "human, person, people, messy, low-quality, blur, noise, low-resolution"
self.general_positive_prompt = "high-quality, high-resolution, sharp, clear, 8k"
def run(self, prompt, negative_prompt, image, seed, height, width, guidance_scale, steps, fov):
prompt = prompt + ", " + self.general_positive_prompt
negative_prompt = self.general_negative_prompt + ", " + negative_prompt
perspective_img = np.array(image)
height_fov, width_fov = perspective_img.shape[:2]
ratio = width_fov / height_fov
w = int((fov / 360) * width)
h = int(w / ratio)
perspective_img = cv2.resize(perspective_img, (w, h), interpolation=cv2.INTER_AREA)
equ = Perspective(perspective_img, fov, 0, 0, crop_bound=False)
img, mask = equ.GetEquirec(height, width)
mask = cv2.erode(mask.astype(np.uint8), np.ones((3, 3), np.uint8), iterations=5)
img = img * mask
mask = 255 - (mask.astype(np.uint8) * 255)
mask = Image.fromarray(mask[:, :, 0])
img = Image.fromarray(cv2.cvtColor(img.astype(np.uint8), cv2.COLOR_BGR2RGB))
image = self.pipe(
prompt=prompt, image=img, mask_image=mask, height=height, width=width,
negative_prompt=negative_prompt, guidance_scale=guidance_scale, num_inference_steps=steps,
generator=torch.Generator("cuda").manual_seed(seed), blend_extend=6, shifting_extend=0, true_cfg_scale=2.0,
).images[0]
return image
# Scene Generation
from hy3dworld import LayerDecomposition, WorldComposer, process_file
class HYworldDemo:
def __init__(self, seed=42):
target_size = 3840
kernel_scale = max(1, int(target_size / 1920))
self.LayerDecomposer = LayerDecomposition()
self.hy3d_world = WorldComposer(
device=torch.device("cuda"), resolution=(target_size, target_size // 2),
seed=seed, filter_mask=True, kernel_scale=kernel_scale,
)
def run(self, image_path, labels_fg1, labels_fg2, classes, output_dir):
os.makedirs(output_dir, exist_ok=True)
fg1_infos = [{"image_path": image_path, "output_path": output_dir, "labels": labels_fg1, "class": classes}]
fg2_infos = [{"image_path": os.path.join(output_dir, 'remove_fg1_image.png'), "output_path": output_dir, "labels": labels_fg2, "class": classes}]
self.LayerDecomposer(fg1_infos, layer=0)
self.LayerDecomposer(fg2_infos, layer=1)
self.LayerDecomposer(fg2_infos, layer=2)
separate_pano, fg_bboxes = self.hy3d_world._load_separate_pano_from_dir(output_dir, sr=True)
layered_world_mesh = self.hy3d_world.generate_world(separate_pano=separate_pano, fg_bboxes=fg_bboxes, world_type='mesh')
mesh_files = []
for layer_idx, layer_info in enumerate(layered_world_mesh):
output_path = os.path.join(output_dir, f"mesh_layer{layer_idx}.ply")
o3d.io.write_triangle_mesh(output_path, layer_info['mesh'])
mesh_files.append(output_path)
return mesh_files
# --- Gradio UI ---
# Instantiate models
t2p_demo = Text2PanoramaDemo()
i2p_demo = Image2PanoramaDemo()
hy_demo = HYworldDemo()
def generate_text_to_pano(prompt, neg_prompt, seed, height, width, scale, steps):
image = t2p_demo.run(prompt, neg_prompt, seed, height, width, scale, steps)
# Save to a temporary file to pass to the next stage
temp_dir = "temp_outputs"
os.makedirs(temp_dir, exist_ok=True)
temp_path = os.path.join(temp_dir, f"pano_{seed}.png")
image.save(temp_path)
return image, temp_path
def generate_image_to_pano(prompt, neg_prompt, image, seed, height, width, scale, steps, fov):
pil_image = Image.fromarray(image)
result_image = i2p_demo.run(prompt, neg_prompt, pil_image, seed, height, width, scale, steps, fov)
temp_dir = "temp_outputs"
os.makedirs(temp_dir, exist_ok=True)
temp_path = os.path.join(temp_dir, f"pano_i2p_{seed}.png")
result_image.save(temp_path)
return result_image, temp_path
def generate_scene(panorama_file_path, fg1, fg2, classes, seed):
if panorama_file_path is None or not os.path.exists(panorama_file_path):
raise gr.Error("Please generate or upload a panorama image first.")
output_dir = f"output_scene_{seed}"
shutil.rmtree(output_dir, ignore_errors=True)
labels_fg1 = [label.strip() for label in fg1.split(',') if label.strip()]
labels_fg2 = [label.strip() for label in fg2.split(',') if label.strip()]
mesh_files = hy_demo.run(panorama_file_path, labels_fg1, labels_fg2, classes, output_dir)
# For now, let's just display the first layer. Gradio's Model3D doesn't support multiple files well.
# A better UI might zip and offer for download, or show multiple viewers.
return mesh_files[0] if mesh_files else None
css = """
#col-container {margin-left: auto; margin-right: auto;}
#pano_output {min-height: 320px;}
#scene_output {min-height: 480px;}
"""
with gr.Blocks(css=css, theme=gr.themes.Soft()) as demo:
gr.Markdown("<h1>HunyuanWorld-1.0: A One-Stop Solution for Text-driven 3D Scene Generation</h1>")
gr.Markdown("Official Repo: [Tencent-Hunyuan/HunyuanWorld-1.0](https://github.com/Tencent-Hunyuan/HunyuanWorld-1.0)")
# State to hold the path of the generated panorama
panorama_path_state = gr.State(None)
with gr.Tabs():
with gr.TabItem("Step 1: Panorama Generation"):
with gr.Row():
with gr.Column():
with gr.Tabs():
with gr.TabItem("Text-to-Panorama") as t2p_tab:
t2p_prompt = gr.Textbox(label="Prompt", value="A beautiful sunset over a mountain range, fantasy style")
t2p_neg_prompt = gr.Textbox(label="Negative Prompt", value="blurry, low quality")
t2p_seed = gr.Slider(label="Seed", minimum=0, maximum=10000, step=1, value=42)
with gr.Accordion("Advanced Settings", open=False):
t2p_height = gr.Slider(label="Height", minimum=512, maximum=1024, step=64, value=960)
t2p_width = gr.Slider(label="Width", minimum=1024, maximum=2048, step=128, value=1920)
t2p_scale = gr.Slider(label="Guidance Scale", minimum=1, maximum=50, step=1, value=30)
t2p_steps = gr.Slider(label="Inference Steps", minimum=10, maximum=100, step=5, value=50)
t2p_button = gr.Button("Generate Panorama", variant="primary")
with gr.TabItem("Image-to-Panorama") as i2p_tab:
i2p_image = gr.Image(type="numpy", label="Input Image")
i2p_prompt = gr.Textbox(label="Prompt", value="A photo of a room, modern design")
i2p_neg_prompt = gr.Textbox(label="Negative Prompt", value="watermark, text")
i2p_seed = gr.Slider(label="Seed", minimum=0, maximum=10000, step=1, value=100)
with gr.Accordion("Advanced Settings", open=False):
i2p_fov = gr.Slider(label="Field of View (FOV)", minimum=40, maximum=120, step=5, value=80)
i2p_height = gr.Slider(label="Height", minimum=512, maximum=1024, step=64, value=960)
i2p_width = gr.Slider(label="Width", minimum=1024, maximum=2048, step=128, value=1920)
i2p_scale = gr.Slider(label="Guidance Scale", minimum=1, maximum=50, step=1, value=30)
i2p_steps = gr.Slider(label="Inference Steps", minimum=10, maximum=100, step=5, value=50)
i2p_button = gr.Button("Generate Panorama", variant="primary")
with gr.Column():
pano_output = gr.Image(label="Panorama Output", elem_id="pano_output")
send_to_scene_btn = gr.Button("Step 2: Send to Scene Generation")
with gr.TabItem("Step 2: Scene Generation") as scene_tab:
with gr.Row():
with gr.Column():
gr.Markdown("Load the panorama generated in Step 1, or upload your own.")
scene_input_image = gr.Image(type="filepath", label="Input Panorama")
scene_classes = gr.Radio(["outdoor", "indoor"], label="Scene Class", value="outdoor")
scene_fg1 = gr.Textbox(label="Foreground Labels (Layer 1)", placeholder="e.g., tree, car, person")
scene_fg2 = gr.Textbox(label="Foreground Labels (Layer 2)", placeholder="e.g., building, mountain")
scene_seed = gr.Slider(label="Seed", minimum=0, maximum=10000, step=1, value=2024)
scene_button = gr.Button("Generate 3D Scene", variant="primary")
with gr.Column():
scene_output = gr.Model3D(label="3D Scene Output (.ply)", elem_id="scene_output")
# Wire up components
t2p_button.click(
fn=generate_text_to_pano,
inputs=[t2p_prompt, t2p_neg_prompt, t2p_seed, t2p_height, t2p_width, t2p_scale, t2p_steps],
outputs=[pano_output, panorama_path_state]
)
i2p_button.click(
fn=generate_image_to_pano,
inputs=[i2p_prompt, i2p_neg_prompt, i2p_image, i2p_seed, i2p_height, i2p_width, i2p_scale, i2p_steps, i2p_fov],
outputs=[pano_output, panorama_path_state]
)
def transfer_to_scene_gen(path):
return {scene_input_image: gr.update(value=path)}
send_to_scene_btn.click(
fn=lambda path: path,
inputs=panorama_path_state,
outputs=scene_input_image
).then(
lambda: gr.Tabs.update(selected=scene_tab),
outputs=demo.children[1] # This is a bit of a hack to select the tab
)
scene_button.click(
fn=generate_scene,
inputs=[scene_input_image, scene_fg1, scene_fg2, scene_classes, scene_seed],
outputs=scene_output
)
demo.queue().launch(debug=True)
|