File size: 24,696 Bytes
57276d4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
import os
import cv2
import json
import numpy as np
from PIL import Image
import open3d as o3d

import torch
from typing import Union, Tuple

from .adaptive_depth_compression import create_adaptive_depth_compressor

from ..utils import (
    get_no_fg_img,
    get_fg_mask,
    get_bg_mask,
    get_filtered_mask,
    sheet_warping,
    depth_match,
    seed_all,
    build_depth_model,
    pred_pano_depth,
)


class WorldComposer:
    r"""WorldComposer is responsible for composing a layered world from input images and masks.
    It handles foreground object generation, background layer composition, and depth inpainting.
    Args:
        device (torch.device): The device to run the model on (default: "cuda").
        resolution (Tuple[int, int]): The resolution of the input images (width, height).
        filter_mask (bool): Whether to filter the foreground masks.
        kernel_scale (int): The scale factor for kernel size in mask processing (default: 1).
        adaptive_depth_compression (bool): Whether to enable adaptive depth compression (default: True).
        seed (int): Random seed for reproducibility.
    """

    def __init__(
        self,
        device: torch.device = "cuda",
        resolution: Tuple[int, int] = (3840, 1920),
        seed: int = 42,
        filter_mask: bool = False,
        kernel_scale: int = 1,
        adaptive_depth_compression: bool = True,
        max_fg_mesh_res: int = 3840,
        max_bg_mesh_res: int = 3840,
        max_sky_mesh_res: int = 1920,
        sky_mask_dilation_kernel: int = 5,
        bg_depth_compression_quantile: float = 0.92,
        fg_mask_erode_scale: float = 2.5,
        fg_filter_beta_scale: float = 3.3,
        fg_filter_alpha_scale: float = 0.15,
        sky_depth_margin: float = 1.02,
    ):
        r"""Initialize"""
        self.device = device
        self.resolution = resolution
        self.filter_mask = filter_mask
        self.kernel_scale = kernel_scale
        self.max_fg_mesh_res = max_fg_mesh_res
        self.max_bg_mesh_res = max_bg_mesh_res
        self.max_sky_mesh_res = max_sky_mesh_res
        self.sky_mask_dilation_kernel = sky_mask_dilation_kernel
        self.bg_depth_compression_quantile = bg_depth_compression_quantile
        self.fg_mask_erode_scale = fg_mask_erode_scale
        self.fg_filter_beta_scale = fg_filter_beta_scale
        self.fg_filter_alpha_scale = fg_filter_alpha_scale
        self.sky_depth_margin = sky_depth_margin

        # Adaptive deep compression configuration
        self.adaptive_depth_compression = adaptive_depth_compression
        self.depth_model = build_depth_model(device)

        # Initialize world composition variables
        self._init_list()
        # init seed
        seed_all(seed)

    def _init_list(self):
        self.layered_world_mesh = []
        self.layered_world_depth = []

    def _process_input(self, separate_pano, fg_bboxes):
        # get all inputs
        self.full_img = separate_pano["full_img"]
        self.no_fg1_img = separate_pano["no_fg1_img"]
        self.no_fg2_img = separate_pano["no_fg2_img"]
        self.sky_img = separate_pano["sky_img"]
        self.fg1_mask = separate_pano["fg1_mask"]
        self.fg2_mask = separate_pano["fg2_mask"]
        self.sky_mask = separate_pano["sky_mask"]
        self.fg1_bbox = fg_bboxes["fg1_bbox"]
        self.fg2_bbox = fg_bboxes["fg2_bbox"]

    def _process_sky_mask(self):
        r"""Process the sky mask to prepare it for further operations."""
        if self.sky_mask is not None:
            # The sky mask identifies non-sky regions, so it needs to be inverted.
            self.sky_mask = 1 - np.array(self.sky_mask) / 255.0
            if len(self.sky_mask.shape) > 2:
                self.sky_mask = self.sky_mask[:, :, 0]
            # Expand the sky mask to ensure complete coverage.
            kernel_size = self.sky_mask_dilation_kernel * self.kernel_scale
            self.sky_mask = (
                cv2.dilate(
                    self.sky_mask,
                    np.ones((kernel_size, kernel_size), np.uint8),
                    iterations=1,
                )
                if self.sky_mask.sum() > 0
                else self.sky_mask
            )
        else:
            # Create an empty mask if no sky is present.
            self.sky_mask = np.zeros((self.H, self.W))

    def _process_fg_mask(self, fg_mask):
        r"""Process the foreground mask to prepare it for further operations."""
        if fg_mask is not None:
            fg_mask = np.array(fg_mask)
            if len(fg_mask.shape) > 2:
                fg_mask = fg_mask[:, :, 0]
        return fg_mask

    def _load_separate_pano_from_dir(self, image_dir, sr):
        r"""Load separate panorama images and foreground bounding boxes from a directory.
        Args:
            image_dir (str): The directory containing the panorama images and bounding boxes.
            sr (bool): Whether to use super-resolution versions of the images.
        Returns:
            images (dict): A dictionary containing the loaded images with keys:
                - "full_img": Complete panorama image (PIL.Image.Image)
                - "no_fg1_img": Panorama with layer 1 foreground object removed (PIL.Image.Image)
                - "no_fg2_img": Panorama with layer 2 foreground object removed (PIL.Image.Image)
                - "sky_img": Sky region image (PIL.Image.Image)
                - "fg1_mask": Binary mask for layer 1 foreground object (PIL.Image.Image)
                - "fg2_mask": Binary mask for layer 2 foreground object (PIL.Image.Image)
                - "sky_mask": Binary mask for sky region (PIL.Image.Image)
            fg_bboxes (dict): A dictionary containing bounding boxes for foreground objects with keys:
                - "fg1_bbox": List of dicts with keys 'label', 'bbox', 'score' for layer 1 object
                - "fg2_bbox": List of dicts with keys 'label', 'bbox', 'score' for layer 2 object
        Raises:
            FileNotFoundError: If the specified image directory does not exist.
        """
        # Define base image files
        image_files = {
            "full_img": "full_image.png",
            "no_fg1_img": "remove_fg1_image.png",
            "no_fg2_img": "remove_fg2_image.png",
            "sky_img": "sky_image.png",
            "fg1_mask": "fg1_mask.png",
            "fg2_mask": "fg2_mask.png",
            "sky_mask": "sky_mask.png",
        }
        # Use super-resolution versions if sr flag is set
        if sr:
            print("***Using super-resolution input image***")
            for key in ["full_img", "no_fg1_img", "no_fg2_img", "sky_img"]:
                image_files[key] = image_files[key].replace(".png", "_sr.png")

        # Check if the directory exists
        if not os.path.exists(image_dir):
            raise FileNotFoundError(f"The image directory does not exist: {image_dir}")

        # Load and adjust all images
        images = {}
        fg1_bbox_scale = 1
        fg2_bbox_scale = 1
        for name, filename in image_files.items():
            filepath = os.path.join(image_dir, filename)
            if not os.path.exists(filepath):
                images[name] = None
            else:
                img = Image.open(filepath)
                if img.size != self.resolution:
                    print(
                        f"Transform the image {name} from {img.size} rescale to {self.resolution}"
                    )
                    # Select different resampling methods based on image type
                    resample = Image.NEAREST if "mask" in name else Image.BICUBIC
                    if "fg1_mask" in name and img.size != self.resolution:
                        fg1_bbox_scale = self.resolution[0] / img.size[0]
                    if "fg2_mask" in name and img.size != self.resolution:
                        fg2_bbox_scale = self.resolution[0] / img.size[0]
                    img = img.resize(self.resolution, resample=resample)
                images[name] = img

        # Check resolution
        if self.resolution is not None:
            for name, img in images.items():
                if img is not None:
                    assert (
                        img.size == self.resolution
                    ), f"{name} resolution does not match"

        # Load foreground object bbox
        fg_bboxes = {}
        fg_bbox_files = {
            "fg1_bbox": "fg1.json",
            "fg2_bbox": "fg2.json",
        }
        for name, filename in fg_bbox_files.items():
            filepath = os.path.join(image_dir, filename)
            if not os.path.exists(filepath):
                fg_bboxes[name] = None
            else:
                fg_bboxes[name] = json.load(open(filepath))
                if "fg1" in name:
                    for i in range(len(fg_bboxes[name]["bboxes"])):
                        fg_bboxes[name]["bboxes"][i]["bbox"] = [
                            x * fg1_bbox_scale
                            for x in fg_bboxes[name]["bboxes"][i]["bbox"]
                        ]
                if "fg2" in name:
                    for i in range(len(fg_bboxes[name]["bboxes"])):
                        fg_bboxes[name]["bboxes"][i]["bbox"] = [
                            x * fg2_bbox_scale
                            for x in fg_bboxes[name]["bboxes"][i]["bbox"]
                        ]

        return images, fg_bboxes

    def generate_world(self, **kwargs):
        r"""Generate a 3D world composition from panorama and foreground objects

        Args:
            **kwargs: Additional keyword arguments containing:
                separate_pano (np.ndarray):
                    Panorama image split into separate cubemap faces [6, H, W, C]
                fg_bboxes (List[Dict]):
                    List of foreground object bounding boxes
                world_type (str):
                    World generation mode:
                    - 'mesh': export mesh

        Returns:
            Tuple: A tuple containing:
                world (np.ndarray):
                    Rendered 3D world view [H,W,3] in RGB format
                layered_world_depth (np.ndarray):
                    Depth map of the composition [H,W]
                    with values in [0,1] range (1=far)
                generated_fg_objects (List[Dict]):
                    Processed foreground objects
        """
        # temporary input setting
        separate_pano = kwargs["separate_pano"]
        fg_bboxes = kwargs["fg_bboxes"]
        world_type = kwargs["world_type"]

        layered_world_mesh = self._compose_layered_world(
            separate_pano, fg_bboxes, world_type=world_type
        )
        return layered_world_mesh

    def _compose_background_layer(self):
        r"""Compose the background layer of the world."""
        # The background layer is composed of the full image without foreground objects.
        if self.BG_MASK.sum() == 0:
            return

        print(f"🏞️ Composing the background layer...")
        if self.fg_status == "no_fg":
            self.no_fg_img_depth = self.full_img_depth
        else:
            # For cascade inpainting, use the last layer's depth as known depth.
            if self.fg_status == "both_fg1_fg2":
                inpaint_mask = self.fg2_mask.astype(np.bool_).astype(np.uint8)
            else:
                inpaint_mask = self.FG_MASK

            # Align the depth of the background layer to the depth of the panoramic image
            self.no_fg_img_depth = pred_pano_depth(
                self.depth_model,
                self.no_fg_img,
                img_name="background",
                last_layer_mask=inpaint_mask,
                last_layer_depth=self.layered_world_depth[-1],
            )

            self.no_fg_img_depth = depth_match(
                self.full_img_depth, self.no_fg_img_depth, self.BG_MASK
            )

        # Apply adaptive depth compression considering foreground layers and scene characteristics
        distance = self.no_fg_img_depth["distance"]
        if (
            hasattr(self, "adaptive_depth_compression")
            and self.adaptive_depth_compression
        ):
            # Automatically determine scene type based on sky_img
            scene_type = "indoor" if self.sky_img is None else "outdoor"
            depth_compressor = create_adaptive_depth_compressor(scene_type=scene_type)
            self.no_fg_img_depth["distance"] = (
                depth_compressor.compress_background_depth(
                    distance, self.layered_world_depth, bg_mask=1 - self.sky_mask
                )
            )
        else:
            # Use a simple quantile-based depth compression method.
            q_val = torch.quantile(distance, self.bg_depth_compression_quantile)
            self.no_fg_img_depth["distance"] = torch.clamp(distance, max=q_val)

        layer_depth_i = self.no_fg_img_depth.copy()
        layer_depth_i["name"] = "background"
        layer_depth_i["mask"] = 1 - self.sky_mask
        layer_depth_i["type"] = "bg"
        self.layered_world_depth.append(layer_depth_i)

        if "mesh" in self.world_type:
            no_fg_img_mesh = sheet_warping(
                self.no_fg_img_depth,
                excluded_region_mask=torch.from_numpy(self.sky_mask).bool(),
                max_size=self.max_bg_mesh_res,
            )
            self.layered_world_mesh.append({"type": "bg", "mesh": no_fg_img_mesh})

    def _compose_foreground_layer(self):
        if self.fg_status == "no_fg":
            return

        print(f"🧩 Composing the foreground layers...")

        # Obtain the list of foreground layers
        fg_layer_list = []
        if self.fg_status == "both_fg1_fg2":
            fg_layer_list.append(
                [self.full_img, self.fg1_mask, self.fg1_bbox, "fg1"]
            )  # fg1 mesh
            fg_layer_list.append(
                [self.no_fg1_img, self.fg2_mask, self.fg2_bbox, "fg2"]
            )  # fg2 mesh
        elif self.fg_status == "only_fg1":
            fg_layer_list.append(
                [self.full_img, self.fg1_mask, self.fg1_bbox, "fg1"]
            )  # fg1 mesh
        elif self.fg_status == "only_fg2":
            fg_layer_list.append(
                [self.no_fg1_img, self.fg2_mask, self.fg2_bbox, "fg2"]
            )  # fg2 mesh

        # Determine whether to generate foreground objects or directly project foreground layers
        project_object_layer = ["fg1", "fg2"]

        for fg_i_img, fg_i_mask, fg_i_bbox, fg_i_type in fg_layer_list:
            print(f"\t - Composing the foreground layer: {fg_i_type}")
            # 1. Estimate the depth of the foreground layer
            # If there are fg1 and fg2, then fg1_img is the panoramic image itself, without the need to estimate depth
            if len(fg_layer_list) > 1:
                if fg_i_type == "fg1":
                    fg_i_img_depth = self.full_img_depth
                elif fg_i_type == "fg2":
                    fg_i_img_depth = pred_pano_depth(
                        self.depth_model,
                        fg_i_img,
                        img_name=f"{fg_i_type}",
                        last_layer_mask=self.fg1_mask.astype(np.bool_).astype(np.uint8),
                        last_layer_depth=self.full_img_depth,
                    )
                    # fg2 only needs to align the depth of the fg2 object area
                    fg2_exclude_fg1_mask = np.logical_and(
                        fg_i_mask.astype(np.bool_), 1 - self.fg1_mask.astype(np.bool_)
                    )

                    # Align the depth of the foreground layer to the depth of the panoramic image
                    fg_i_img_depth = depth_match(
                        self.full_img_depth, fg_i_img_depth, fg2_exclude_fg1_mask
                    )
                else:
                    raise ValueError(f"Invalid foreground object type: {fg_i_type}")
            else:
                # If only fg1 or fg2 exists, its image is the panoramic image, so depth estimation is not required.
                fg_i_img_depth = self.full_img_depth

            # Compress outliers in the foreground depth.
            if (
                hasattr(self, "adaptive_depth_compression")
                and self.adaptive_depth_compression
            ):
                depth_compressor = create_adaptive_depth_compressor()
                fg_i_img_depth["distance"] = depth_compressor.compress_foreground_depth(
                    fg_i_img_depth["distance"], fg_i_mask
                )

            in_fg_i_mask = fg_i_mask.copy()
            if fg_i_mask.sum() > 0:
                # 2. Perform sheet warping.
                if fg_i_type in project_object_layer:
                    in_fg_i_mask = self._project_fg_depth(
                        fg_i_img_depth, fg_i_mask, fg_i_type
                    )
                else:
                    raise ValueError(f"Invalid foreground object type: {fg_i_type}")
            else:
                # If no objects are in the foreground layer, it won't be added to the layered world depth.
                pass

            # save layered depth
            layer_depth_i = fg_i_img_depth.copy()
            layer_depth_i["name"] = fg_i_type
            # Using edge filtered masks to ensure the accuracy of foreground depth during depth compression
            layer_depth_i["mask"] = (
                in_fg_i_mask if in_fg_i_mask is not None else np.zeros_like(fg_i_mask)
            )
            layer_depth_i["type"] = fg_i_type
            self.layered_world_depth.append(layer_depth_i)

    def _project_fg_depth(self, fg_i_img_depth, fg_i_mask, fg_i_type):
        r"""Project the foreground depth to create a mesh or Gaussian splatting object."""
        in_fg_i_mask = fg_i_mask.astype(np.bool_).astype(
            np.uint8
        )
        # Erode the mask to remove edge artifacts from foreground objects.
        erode_size = int(self.fg_mask_erode_scale * self.kernel_scale)
        eroded_in_fg_i_mask = cv2.erode(
            in_fg_i_mask, np.ones((erode_size, erode_size), np.uint8), iterations=1
        )  # The result is a uint8 array with values of 0 or 1.

        # Filter edges
        if self.filter_mask:
            filtered_fg_i_img_mask = (
                1
                - get_filtered_mask(
                    1.0 / fg_i_img_depth["distance"][None, :, :, None],
                    beta=self.fg_filter_beta_scale * self.kernel_scale,
                    alpha_threshold=self.fg_filter_alpha_scale * self.kernel_scale,
                    device=self.device,
                )
                .squeeze()
                .cpu()
            )
            # Convert to binary mask
            filtered_fg_i_img_mask = 1 - filtered_fg_i_img_mask.numpy()

            # Combine eroded mask with filtered mask
            eroded_in_fg_i_mask = np.logical_and(
                eroded_in_fg_i_mask, filtered_fg_i_img_mask
            )

        # Process the eroded mask to create the final binary mask
        in_fg_i_mask = eroded_in_fg_i_mask > 0.5
        out_fg_i_mask = 1 - in_fg_i_mask

        # Convert the depth image to a mesh or Gaussian splatting object
        if "mesh" in self.world_type:
            fg_i_mesh = sheet_warping(
                fg_i_img_depth,
                excluded_region_mask=torch.from_numpy(out_fg_i_mask).bool(),
                max_size=self.max_fg_mesh_res,
            )
            self.layered_world_mesh.append({"type": fg_i_type, "mesh": fg_i_mesh})

        return in_fg_i_mask

    def _compose_sky_layer(self):
        r"""Compose the sky layer of the world."""
        if self.sky_img is not None:
            print(f"πŸ• Composing the sky layer...")
            self.sky_img = torch.tensor(
                np.array(self.sky_img), device=self.full_img_depth["rgb"].device
            )

            # Calculate the maximum depth value of all foreground and background layers
            max_scene_depth = torch.tensor(
                0.0, device=self.full_img_depth["rgb"].device
            )
            for layer in self.layered_world_depth:
                layer_depth = layer["distance"]
                layer_mask = layer.get("mask", None)

                if layer_mask is not None:
                    if not isinstance(layer_mask, torch.Tensor):
                        layer_mask = torch.from_numpy(layer_mask).to(layer_depth.device)
                    mask_bool = layer_mask.bool()
                    if (
                        mask_bool.sum() > 0
                    ):  # Only search for the maximum value within the mask area
                        layer_max = layer_depth[mask_bool].max()
                        max_scene_depth = torch.max(max_scene_depth, layer_max)
                else:
                    # If there is no mask, consider the entire depth map
                    max_scene_depth = torch.max(max_scene_depth, layer_depth.max())

            # Set the sky depth to be slightly greater than the maximum scene depth.
            sky_distance = self.sky_depth_margin * max_scene_depth if max_scene_depth > 0 else 3.0

            sky_pred = {
                "rgb": self.sky_img,
                "rays": self.full_img_depth["rays"],
                "distance": sky_distance
                * torch.ones_like(self.full_img_depth["distance"]),
            }

            if "mesh" in self.world_type:
                # The sky doesn't need smooth edges with jagged edges
                sky_mesh = sheet_warping(
                    sky_pred,
                    connect_boundary_max_dist=None,
                    max_size=self.max_sky_mesh_res,
                )
                self.layered_world_mesh.append({"type": "sky", "mesh": sky_mesh})

    def _compose_layered_world(
        self,
        separate_pano: dict,
        fg_bboxes: dict,
        world_type: list = ["mesh"],
    ) -> Union[o3d.geometry.TriangleMesh]:
        r"""
        Compose each layer into a complete world
        Args:
            separate_pano: dict containing the following images:
                full_img: Complete panorama image (PIL.Image.Image)
                no_fg1_img: Panorama with layer 1 foreground object removed (PIL.Image.Image)
                no_fg2_img: Panorama with layer 2 foreground object removed (PIL.Image.Image)
                sky_img: Sky region image (PIL.Image.Image)
                fg1_mask: Binary mask for layer 1 foreground object (PIL.Image.Image)
                fg2_mask: Binary mask for layer 2 foreground object (PIL.Image.Image)
                sky_mask: Binary mask for sky region (PIL.Image.Image)

            fg_bboxes: dict containing bounding boxes for foreground objects:
                fg1_bbox: List of dicts with keys 'label', 'bbox', 'score' for layer 1 object
                fg2_bbox: List of dicts with keys 'label', 'bbox', 'score' for layer 2 object

            world_type: list, ["mesh"]

            filter_mask: bool, whether to filter the mask

        Returns:
            layered_world: dict containing the following:
                mesh: list of o3d.geometry.TriangleMesh
                objects: list of ImageWithOneObject
        """
        self.world_type = world_type
        self._process_input(separate_pano, fg_bboxes)
        self.W, self.H = self.full_img.size

        self._init_list()

        # Processing sky and foreground masks
        self._process_sky_mask()
        self.fg1_mask = self._process_fg_mask(self.fg1_mask)
        self.fg2_mask = self._process_fg_mask(self.fg2_mask)

        # Overall foreground mask: Merge multiple foreground masks, background mask: Excluding sky
        self.FG_MASK = get_fg_mask(self.fg1_mask, self.fg2_mask)
        self.BG_MASK = get_bg_mask(self.sky_mask, self.FG_MASK, self.kernel_scale)

        # Obtain background+sky layer (no_fg_img
        self.no_fg_img, self.fg_status = get_no_fg_img(
            self.no_fg1_img, self.no_fg2_img, self.full_img
        )

        # Predicting the Depth of Panoramic Images
        self.full_img_depth = pred_pano_depth(  # fg1 depth
            self.depth_model,
            self.full_img,
            img_name="full_img",
        )

        # Layered construction of the world
        print(f"🎨 Start to compose the world layer by layer...")
        # 1. The foreground layers
        self._compose_foreground_layer()

        # 2. The background layers
        self._compose_background_layer()

        # 3. The sky layers
        self._compose_sky_layer()

        print("πŸŽ‰ Congratulations! World composition completed successfully!")

        return self.layered_world_mesh