Spaces:
Running
on
L40S
Running
on
L40S
miaoyibo
commited on
Commit
·
bfa25fc
1
Parent(s):
f563de6
app.py
CHANGED
@@ -1,64 +1,352 @@
|
|
|
|
1 |
import gradio as gr
|
2 |
-
|
|
|
|
|
|
|
3 |
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
8 |
|
|
|
|
|
|
|
|
|
9 |
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
15 |
temperature,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
16 |
top_p,
|
|
|
|
|
|
|
|
|
17 |
):
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
gr.
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
61 |
|
62 |
|
63 |
if __name__ == "__main__":
|
64 |
-
|
|
|
|
1 |
+
import argparse
|
2 |
import gradio as gr
|
3 |
+
import os
|
4 |
+
from PIL import Image
|
5 |
+
import spaces
|
6 |
+
import copy
|
7 |
|
8 |
+
from kimi_vl.serve.frontend import reload_javascript
|
9 |
+
from kimi_vl.serve.utils import (
|
10 |
+
configure_logger,
|
11 |
+
pil_to_base64,
|
12 |
+
parse_ref_bbox,
|
13 |
+
strip_stop_words,
|
14 |
+
is_variable_assigned,
|
15 |
+
)
|
16 |
+
from kimi_vl.serve.gradio_utils import (
|
17 |
+
cancel_outputing,
|
18 |
+
delete_last_conversation,
|
19 |
+
reset_state,
|
20 |
+
reset_textbox,
|
21 |
+
transfer_input,
|
22 |
+
wrap_gen_fn,
|
23 |
+
)
|
24 |
+
from kimi_vl.serve.chat_utils import (
|
25 |
+
generate_prompt_with_history,
|
26 |
+
convert_conversation_to_prompts,
|
27 |
+
to_gradio_chatbot,
|
28 |
+
to_gradio_history,
|
29 |
+
)
|
30 |
+
from kimi_vl.serve.inference import kimi_vl_generate, load_model
|
31 |
+
from kimi_vl.serve.examples import get_examples
|
32 |
+
|
33 |
+
TITLE = """<h1 align="left" style="min-width:200px; margin-top:0;">Chat with Kimi-VL-A3B-Thinking🤔 </h1>"""
|
34 |
+
DESCRIPTION_TOP = """<a href="https://github.com/MoonshotAI/Kimi-VL" target="_blank">Kimi-VL-A3B-Thinking</a> is a multi-modal LLM that can understand text and images, and generate text with thinking processes. For non-thinking version, please try [Kimi-VL-A3B](https://huggingface.co/spaces/moonshotai/Kimi-VL-A3B)."""
|
35 |
+
DESCRIPTION = """"""
|
36 |
+
ROOT_DIR = os.path.dirname(os.path.abspath(__file__))
|
37 |
+
DEPLOY_MODELS = dict()
|
38 |
+
logger = configure_logger()
|
39 |
+
|
40 |
+
|
41 |
+
def parse_args():
|
42 |
+
parser = argparse.ArgumentParser()
|
43 |
+
parser.add_argument("--model", type=str, default="Kimi-VL-A3B-Thinking")
|
44 |
+
parser.add_argument(
|
45 |
+
"--local-path",
|
46 |
+
type=str,
|
47 |
+
default="",
|
48 |
+
help="huggingface ckpt, optional",
|
49 |
+
)
|
50 |
+
parser.add_argument("--ip", type=str, default="0.0.0.0")
|
51 |
+
parser.add_argument("--port", type=int, default=7860)
|
52 |
+
return parser.parse_args()
|
53 |
+
|
54 |
+
|
55 |
+
def fetch_model(model_name: str):
|
56 |
+
global args, DEPLOY_MODELS
|
57 |
+
|
58 |
+
if args.local_path:
|
59 |
+
model_path = args.local_path
|
60 |
+
else:
|
61 |
+
model_path = f"moonshotai/{args.model}"
|
62 |
+
|
63 |
+
if model_name in DEPLOY_MODELS:
|
64 |
+
model_info = DEPLOY_MODELS[model_name]
|
65 |
+
print(f"{model_name} has been loaded.")
|
66 |
+
else:
|
67 |
+
print(f"{model_name} is loading...")
|
68 |
+
DEPLOY_MODELS[model_name] = load_model(model_path)
|
69 |
+
print(f"Load {model_name} successfully...")
|
70 |
+
model_info = DEPLOY_MODELS[model_name]
|
71 |
+
|
72 |
+
return model_info
|
73 |
+
|
74 |
+
|
75 |
+
def preview_images(files) -> list[str]:
|
76 |
+
if files is None:
|
77 |
+
return []
|
78 |
|
79 |
+
image_paths = []
|
80 |
+
for file in files:
|
81 |
+
image_paths.append(file.name)
|
82 |
+
return image_paths
|
83 |
|
84 |
+
|
85 |
+
def get_prompt(conversation) -> str:
|
86 |
+
"""
|
87 |
+
Get the prompt for the conversation.
|
88 |
+
"""
|
89 |
+
system_prompt = conversation.system_template.format(system_message=conversation.system_message)
|
90 |
+
return system_prompt
|
91 |
+
|
92 |
+
def highlight_thinking(msg: str) -> str:
|
93 |
+
msg = copy.deepcopy(msg)
|
94 |
+
if "◁think▷" in msg:
|
95 |
+
msg = msg.replace("◁think▷", "<b style='color:blue;'>🤔Thinking...</b>\n")
|
96 |
+
if "◁/think▷" in msg:
|
97 |
+
msg = msg.replace("◁/think▷", "\n<b style='color:purple;'>💡Summary</b>\n")
|
98 |
+
|
99 |
+
return msg
|
100 |
+
|
101 |
+
@wrap_gen_fn
|
102 |
+
@spaces.GPU(duration=180)
|
103 |
+
def predict(
|
104 |
+
text,
|
105 |
+
images,
|
106 |
+
chatbot,
|
107 |
+
history,
|
108 |
+
top_p,
|
109 |
temperature,
|
110 |
+
max_length_tokens,
|
111 |
+
max_context_length_tokens,
|
112 |
+
chunk_size: int = 512,
|
113 |
+
):
|
114 |
+
"""
|
115 |
+
Predict the response for the input text and images.
|
116 |
+
Args:
|
117 |
+
text (str): The input text.
|
118 |
+
images (list[PIL.Image.Image]): The input images.
|
119 |
+
chatbot (list): The chatbot.
|
120 |
+
history (list): The history.
|
121 |
+
top_p (float): The top-p value.
|
122 |
+
temperature (float): The temperature value.
|
123 |
+
repetition_penalty (float): The repetition penalty value.
|
124 |
+
max_length_tokens (int): The max length tokens.
|
125 |
+
max_context_length_tokens (int): The max context length tokens.
|
126 |
+
chunk_size (int): The chunk size.
|
127 |
+
"""
|
128 |
+
print("running the prediction function")
|
129 |
+
try:
|
130 |
+
model, processor = fetch_model(args.model)
|
131 |
+
|
132 |
+
if text == "":
|
133 |
+
yield chatbot, history, "Empty context."
|
134 |
+
return
|
135 |
+
except KeyError:
|
136 |
+
yield [[text, "No Model Found"]], [], "No Model Found"
|
137 |
+
return
|
138 |
+
|
139 |
+
if images is None:
|
140 |
+
images = []
|
141 |
+
|
142 |
+
# load images
|
143 |
+
pil_images = []
|
144 |
+
for img_or_file in images:
|
145 |
+
try:
|
146 |
+
# load as pil image
|
147 |
+
if isinstance(images, Image.Image):
|
148 |
+
pil_images.append(img_or_file)
|
149 |
+
else:
|
150 |
+
image = Image.open(img_or_file.name).convert("RGB")
|
151 |
+
pil_images.append(image)
|
152 |
+
except Exception as e:
|
153 |
+
print(f"Error loading image: {e}")
|
154 |
+
|
155 |
+
# generate prompt
|
156 |
+
conversation = generate_prompt_with_history(
|
157 |
+
text,
|
158 |
+
pil_images,
|
159 |
+
history,
|
160 |
+
processor,
|
161 |
+
max_length=max_context_length_tokens,
|
162 |
+
)
|
163 |
+
all_conv, last_image = convert_conversation_to_prompts(conversation)
|
164 |
+
stop_words = conversation.stop_str
|
165 |
+
gradio_chatbot_output = to_gradio_chatbot(conversation)
|
166 |
+
|
167 |
+
full_response = ""
|
168 |
+
for x in kimi_vl_generate(
|
169 |
+
conversations=all_conv,
|
170 |
+
model=model,
|
171 |
+
processor=processor,
|
172 |
+
stop_words=stop_words,
|
173 |
+
max_length=max_length_tokens,
|
174 |
+
temperature=temperature,
|
175 |
+
top_p=top_p,
|
176 |
+
):
|
177 |
+
full_response += x
|
178 |
+
response = strip_stop_words(full_response, stop_words)
|
179 |
+
conversation.update_last_message(response)
|
180 |
+
gradio_chatbot_output[-1][1] = highlight_thinking(response)
|
181 |
+
|
182 |
+
yield gradio_chatbot_output, to_gradio_history(conversation), "Generating..."
|
183 |
+
|
184 |
+
if last_image is not None:
|
185 |
+
vg_image = parse_ref_bbox(response, last_image)
|
186 |
+
if vg_image is not None:
|
187 |
+
vg_base64 = pil_to_base64(vg_image, "vg", max_size=800, min_size=400)
|
188 |
+
gradio_chatbot_output[-1][1] += vg_base64
|
189 |
+
yield gradio_chatbot_output, to_gradio_history(conversation), "Generating..."
|
190 |
+
|
191 |
+
logger.info("flushed result to gradio")
|
192 |
+
|
193 |
+
if is_variable_assigned("x"):
|
194 |
+
print(
|
195 |
+
f"temperature: {temperature}, "
|
196 |
+
f"top_p: {top_p}, "
|
197 |
+
f"max_length_tokens: {max_length_tokens}"
|
198 |
+
)
|
199 |
+
|
200 |
+
yield gradio_chatbot_output, to_gradio_history(conversation), "Generate: Success"
|
201 |
+
|
202 |
+
|
203 |
+
def retry(
|
204 |
+
text,
|
205 |
+
images,
|
206 |
+
chatbot,
|
207 |
+
history,
|
208 |
top_p,
|
209 |
+
temperature,
|
210 |
+
max_length_tokens,
|
211 |
+
max_context_length_tokens,
|
212 |
+
chunk_size: int = 512,
|
213 |
):
|
214 |
+
"""
|
215 |
+
Retry the response for the input text and images.
|
216 |
+
"""
|
217 |
+
if len(history) == 0:
|
218 |
+
yield (chatbot, history, "Empty context")
|
219 |
+
return
|
220 |
+
|
221 |
+
chatbot.pop()
|
222 |
+
history.pop()
|
223 |
+
text = history.pop()[-1]
|
224 |
+
if type(text) is tuple:
|
225 |
+
text, _ = text
|
226 |
+
|
227 |
+
yield from predict(
|
228 |
+
text,
|
229 |
+
images,
|
230 |
+
chatbot,
|
231 |
+
history,
|
232 |
+
top_p,
|
233 |
+
temperature,
|
234 |
+
max_length_tokens,
|
235 |
+
max_context_length_tokens,
|
236 |
+
chunk_size,
|
237 |
+
)
|
238 |
+
|
239 |
+
|
240 |
+
def build_demo(args: argparse.Namespace) -> gr.Blocks:
|
241 |
+
with gr.Blocks(theme=gr.themes.Soft(), delete_cache=(1800, 1800)) as demo:
|
242 |
+
history = gr.State([])
|
243 |
+
input_text = gr.State()
|
244 |
+
input_images = gr.State()
|
245 |
+
|
246 |
+
with gr.Row():
|
247 |
+
gr.HTML(TITLE)
|
248 |
+
status_display = gr.Markdown("Success", elem_id="status_display")
|
249 |
+
gr.Markdown(DESCRIPTION_TOP)
|
250 |
+
|
251 |
+
with gr.Row(equal_height=True):
|
252 |
+
with gr.Column(scale=4):
|
253 |
+
with gr.Row():
|
254 |
+
chatbot = gr.Chatbot(
|
255 |
+
elem_id="Kimi-VL-A3B-Thinking-chatbot",
|
256 |
+
show_share_button=True,
|
257 |
+
bubble_full_width=False,
|
258 |
+
height=600,
|
259 |
+
)
|
260 |
+
with gr.Row():
|
261 |
+
with gr.Column(scale=4):
|
262 |
+
text_box = gr.Textbox(show_label=False, placeholder="Enter text", container=False)
|
263 |
+
with gr.Column(min_width=70):
|
264 |
+
submit_btn = gr.Button("Send")
|
265 |
+
with gr.Column(min_width=70):
|
266 |
+
cancel_btn = gr.Button("Stop")
|
267 |
+
with gr.Row():
|
268 |
+
empty_btn = gr.Button("🧹 New Conversation")
|
269 |
+
retry_btn = gr.Button("🔄 Regenerate")
|
270 |
+
del_last_btn = gr.Button("🗑️ Remove Last Turn")
|
271 |
+
|
272 |
+
with gr.Column():
|
273 |
+
# add note no more than 2 images once
|
274 |
+
gr.Markdown("Note: you can upload no more than 2 images once")
|
275 |
+
upload_images = gr.Files(file_types=["image"], show_label=True)
|
276 |
+
gallery = gr.Gallery(columns=[3], height="200px", show_label=True)
|
277 |
+
upload_images.change(preview_images, inputs=upload_images, outputs=gallery)
|
278 |
+
# Parameter Setting Tab for control the generation parameters
|
279 |
+
with gr.Tab(label="Parameter Setting"):
|
280 |
+
top_p = gr.Slider(minimum=-0, maximum=1.0, value=1.0, step=0.05, interactive=True, label="Top-p")
|
281 |
+
temperature = gr.Slider(
|
282 |
+
minimum=0, maximum=1.0, value=0.6, step=0.1, interactive=True, label="Temperature"
|
283 |
+
)
|
284 |
+
max_length_tokens = gr.Slider(
|
285 |
+
minimum=512, maximum=8192, value=2048, step=64, interactive=True, label="Max Length Tokens"
|
286 |
+
)
|
287 |
+
max_context_length_tokens = gr.Slider(
|
288 |
+
minimum=512, maximum=8192, value=2048, step=64, interactive=True, label="Max Context Length Tokens"
|
289 |
+
)
|
290 |
+
|
291 |
+
show_images = gr.HTML(visible=False)
|
292 |
+
|
293 |
+
gr.Examples(
|
294 |
+
examples=get_examples(ROOT_DIR),
|
295 |
+
inputs=[upload_images, show_images, text_box],
|
296 |
+
)
|
297 |
+
gr.Markdown()
|
298 |
+
|
299 |
+
input_widgets = [
|
300 |
+
input_text,
|
301 |
+
input_images,
|
302 |
+
chatbot,
|
303 |
+
history,
|
304 |
+
top_p,
|
305 |
+
temperature,
|
306 |
+
max_length_tokens,
|
307 |
+
max_context_length_tokens,
|
308 |
+
]
|
309 |
+
output_widgets = [chatbot, history, status_display]
|
310 |
+
|
311 |
+
transfer_input_args = dict(
|
312 |
+
fn=transfer_input,
|
313 |
+
inputs=[text_box, upload_images],
|
314 |
+
outputs=[input_text, input_images, text_box, upload_images, submit_btn],
|
315 |
+
show_progress=True,
|
316 |
+
)
|
317 |
+
|
318 |
+
predict_args = dict(fn=predict, inputs=input_widgets, outputs=output_widgets, show_progress=True)
|
319 |
+
retry_args = dict(fn=retry, inputs=input_widgets, outputs=output_widgets, show_progress=True)
|
320 |
+
reset_args = dict(fn=reset_textbox, inputs=[], outputs=[text_box, status_display])
|
321 |
+
|
322 |
+
predict_events = [
|
323 |
+
text_box.submit(**transfer_input_args).then(**predict_args),
|
324 |
+
submit_btn.click(**transfer_input_args).then(**predict_args),
|
325 |
+
]
|
326 |
+
|
327 |
+
empty_btn.click(reset_state, outputs=output_widgets, show_progress=True)
|
328 |
+
empty_btn.click(**reset_args)
|
329 |
+
retry_btn.click(**retry_args)
|
330 |
+
del_last_btn.click(delete_last_conversation, [chatbot, history], output_widgets, show_progress=True)
|
331 |
+
cancel_btn.click(cancel_outputing, [], [status_display], cancels=predict_events)
|
332 |
+
|
333 |
+
demo.title = "Kimi-VL-A3B-Thinking Chatbot"
|
334 |
+
return demo
|
335 |
+
|
336 |
+
|
337 |
+
def main(args: argparse.Namespace):
|
338 |
+
demo = build_demo(args)
|
339 |
+
reload_javascript()
|
340 |
+
|
341 |
+
# concurrency_count=CONCURRENT_COUNT, max_size=MAX_EVENTS
|
342 |
+
favicon_path = os.path.join("kimi_vl/serve/assets/favicon.ico")
|
343 |
+
demo.queue().launch(
|
344 |
+
favicon_path=favicon_path,
|
345 |
+
server_name=args.ip,
|
346 |
+
server_port=args.port,
|
347 |
+
)
|
348 |
|
349 |
|
350 |
if __name__ == "__main__":
|
351 |
+
args = parse_args()
|
352 |
+
main(args)
|