Spaces:
Running
on
T4
Running
on
T4
github-actions[bot]
commited on
Commit
·
a4a7f53
1
Parent(s):
fe77b4f
Sync with https://github.com/mozilla-ai/document-to-podcast
Browse files- app.py +10 -54
- requirements.txt +1 -0
app.py
CHANGED
@@ -6,9 +6,6 @@ from pathlib import Path
|
|
6 |
import numpy as np
|
7 |
import soundfile as sf
|
8 |
import streamlit as st
|
9 |
-
import requests
|
10 |
-
from bs4 import BeautifulSoup
|
11 |
-
from requests.exceptions import RequestException
|
12 |
|
13 |
from document_to_podcast.preprocessing import DATA_LOADERS, DATA_CLEANERS
|
14 |
from document_to_podcast.inference.model_loaders import (
|
@@ -55,7 +52,10 @@ uploaded_file = st.file_uploader(
|
|
55 |
"Choose a file", type=["pdf", "html", "txt", "docx", "md"]
|
56 |
)
|
57 |
|
58 |
-
|
|
|
|
|
|
|
59 |
st.divider()
|
60 |
st.header("Loading and Cleaning Data")
|
61 |
st.markdown(
|
@@ -63,11 +63,15 @@ if uploaded_file is not None:
|
|
63 |
)
|
64 |
st.divider()
|
65 |
|
66 |
-
|
|
|
|
|
|
|
|
|
|
|
67 |
|
68 |
col1, col2 = st.columns(2)
|
69 |
|
70 |
-
raw_text = DATA_LOADERS[extension](uploaded_file)
|
71 |
with col1:
|
72 |
st.subheader("Raw Text")
|
73 |
st.text_area(
|
@@ -86,53 +90,6 @@ if uploaded_file is not None:
|
|
86 |
|
87 |
st.divider()
|
88 |
|
89 |
-
st.header("Or Enter a Website URL")
|
90 |
-
url = st.text_input("URL", placeholder="https://blog.mozilla.ai/...")
|
91 |
-
process_url = st.button("Clean URL Content")
|
92 |
-
|
93 |
-
|
94 |
-
def process_url_content(url: str) -> tuple[str, str]:
|
95 |
-
"""Fetch and clean content from a URL.
|
96 |
-
|
97 |
-
Args:
|
98 |
-
url: The URL to fetch content from
|
99 |
-
|
100 |
-
Returns:
|
101 |
-
tuple containing raw and cleaned text
|
102 |
-
"""
|
103 |
-
response = requests.get(url)
|
104 |
-
response.raise_for_status()
|
105 |
-
soup = BeautifulSoup(response.text, "html.parser")
|
106 |
-
raw_text = soup.get_text()
|
107 |
-
return raw_text, DATA_CLEANERS[".html"](raw_text)
|
108 |
-
|
109 |
-
|
110 |
-
if url and process_url:
|
111 |
-
try:
|
112 |
-
with st.spinner("Fetching and cleaning content..."):
|
113 |
-
raw_text, clean_text = process_url_content(url)
|
114 |
-
st.session_state["clean_text"] = clean_text
|
115 |
-
|
116 |
-
# Display results
|
117 |
-
col1, col2 = st.columns(2)
|
118 |
-
with col1:
|
119 |
-
st.subheader("Raw Text")
|
120 |
-
st.text_area(
|
121 |
-
"Number of characters before cleaning: " f"{len(raw_text)}",
|
122 |
-
f"{raw_text[:500]}...",
|
123 |
-
)
|
124 |
-
with col2:
|
125 |
-
st.subheader("Cleaned Text")
|
126 |
-
st.text_area(
|
127 |
-
"Number of characters after cleaning: " f"{len(clean_text)}",
|
128 |
-
f"{clean_text[:500]}...",
|
129 |
-
)
|
130 |
-
except RequestException as e:
|
131 |
-
st.error(f"Error fetching URL: {str(e)}")
|
132 |
-
except Exception as e:
|
133 |
-
st.error(f"Error processing content: {str(e)}")
|
134 |
-
|
135 |
-
# Second part - Podcast generation
|
136 |
if "clean_text" in st.session_state:
|
137 |
clean_text = st.session_state["clean_text"]
|
138 |
|
@@ -143,7 +100,6 @@ if "clean_text" in st.session_state:
|
|
143 |
)
|
144 |
st.divider()
|
145 |
|
146 |
-
# Load models
|
147 |
text_model = load_text_to_text_model()
|
148 |
speech_model = load_text_to_speech_model()
|
149 |
|
|
|
6 |
import numpy as np
|
7 |
import soundfile as sf
|
8 |
import streamlit as st
|
|
|
|
|
|
|
9 |
|
10 |
from document_to_podcast.preprocessing import DATA_LOADERS, DATA_CLEANERS
|
11 |
from document_to_podcast.inference.model_loaders import (
|
|
|
52 |
"Choose a file", type=["pdf", "html", "txt", "docx", "md"]
|
53 |
)
|
54 |
|
55 |
+
st.header("Or Enter a Website URL")
|
56 |
+
url = st.text_input("URL", placeholder="https://blog.mozilla.ai/...")
|
57 |
+
|
58 |
+
if uploaded_file is not None or url:
|
59 |
st.divider()
|
60 |
st.header("Loading and Cleaning Data")
|
61 |
st.markdown(
|
|
|
63 |
)
|
64 |
st.divider()
|
65 |
|
66 |
+
if uploaded_file:
|
67 |
+
extension = Path(uploaded_file.name).suffix
|
68 |
+
raw_text = DATA_LOADERS[extension](uploaded_file)
|
69 |
+
else:
|
70 |
+
extension = ".html"
|
71 |
+
raw_text = DATA_LOADERS["url"](url)
|
72 |
|
73 |
col1, col2 = st.columns(2)
|
74 |
|
|
|
75 |
with col1:
|
76 |
st.subheader("Raw Text")
|
77 |
st.text_area(
|
|
|
90 |
|
91 |
st.divider()
|
92 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
93 |
if "clean_text" in st.session_state:
|
94 |
clean_text = st.session_state["clean_text"]
|
95 |
|
|
|
100 |
)
|
101 |
st.divider()
|
102 |
|
|
|
103 |
text_model = load_text_to_text_model()
|
104 |
speech_model = load_text_to_speech_model()
|
105 |
|
requirements.txt
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
document-to-podcast
|