Spaces:
Running
Running
File size: 5,158 Bytes
a2cbfcc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 |
# noura_server.py
import os, time, hmac, traceback
from typing import Any, Dict
from flask import Flask, request, jsonify
from dotenv import load_dotenv
import importlib
from concurrent.futures import ThreadPoolExecutor, TimeoutError as FuturesTimeoutError
# (اختياري) لو عندك هذه الملفات فعلاً:
try:
import analyzer, brain, core, knowledge_search, learner, media_analyzer, memory, self_learning, self_improvement # noqa: F401
except Exception as e:
print("[WARN] helper modules import issue:", repr(e))
# --- بيئة ---
load_dotenv()
API_KEY = (os.getenv("NOURA_API_KEY", "changeme") or "").strip()
MIN_SIM_DEFAULT = float(os.getenv("MIN_SIMILARITY", "0.82"))
ADAPTER_MODULE = os.getenv("SELF_LEARNING_MODULE", "self_learning_adapter")
# --- الأداپتر ---
sl = importlib.import_module(ADAPTER_MODULE)
sl.init({"min_similarity": MIN_SIM_DEFAULT})
# (اختياري) مولّد ردود مخصص
try:
from telegram_listener import generate_reply as custom_generate_reply
except Exception:
custom_generate_reply = None
# --- Flask ---
app = Flask(__name__)
# --- ThreadPool للمهل ---
EXEC = ThreadPoolExecutor(max_workers=4)
def call_with_timeout(fn, *args, timeout=1.8, default=None, label=""):
fut = EXEC.submit(fn, *args)
try:
return fut.result(timeout=timeout)
except FuturesTimeoutError:
print(f"[TIMEOUT] {label or fn.__name__} > {timeout}s")
return default
except Exception as e:
print(f"[ERR] {label or fn.__name__} crashed:", repr(e))
return default
def verify_auth(req) -> bool:
key = (req.headers.get("x-api-key") or "").strip()
ok = hmac.compare_digest(key, API_KEY)
if not ok:
print(f"[AUTH FAIL] header={repr(key)} expected={repr(API_KEY)}")
return ok
@app.route("/health", methods=["GET"])
def health():
return jsonify({"ok": True}), 200
@app.route("/chat", methods=["POST"], endpoint="chat_api")
def chat():
try:
if not verify_auth(request):
return jsonify({"error": "unauthorized"}), 401
t0 = time.time()
data: Dict[str, Any] = request.get_json(force=True) or {}
user = (data.get("user") or "unknown").strip()
text = (data.get("text") or "").strip()
meta = data.get("meta") or {}
chat_id = str(meta.get("peer_id", "unknown"))
ts = int(time.time())
reply = ""
used_memory = False
# 1) استرجاع من الذاكرة (بمهلة)
if text:
cand, score = call_with_timeout(
sl.find_best, chat_id, text,
timeout=1.8, default=(None, 0.0), label="find_best"
) or (None, 0.0)
if cand and score >= MIN_SIM_DEFAULT:
reply, used_memory = cand, True
# 2) مولد مخصص (اختياري)
if not reply and custom_generate_reply:
r = call_with_timeout(custom_generate_reply, text, timeout=1.5, default="", label="custom_generate_reply")
reply = (r or "").strip()
# 3) fallback
if not reply:
low = text.lower()
if any(w in low for w in ["سهم", "اسهم", "stocks", "stock"]):
reply = "تنبيه: لستُ مستشارًا ماليًا. اكتب سؤالك بدقة وسأساعدك بشكل عام."
else:
reply = f"وصلتني رسالتك: «{text}». ماذا تريد بعدها؟"
# 4) حفظ التعلم (لا يمنع الرد حتى لو تأخر)
if text:
_ = call_with_timeout(sl.add_example, chat_id, user, text, reply, meta, timeout=1.8, label="add_example")
src = "memory" if used_memory else "fallback"
print(f"[CHAT] chat_id={chat_id} src={src} dt={(time.time()-t0)*1000:.1f}ms text={text[:60]}")
return jsonify({"reply": reply, "ts": ts, "used_memory": used_memory})
except Exception:
print("[ERR] /chat top-level:\n", traceback.format_exc())
return jsonify({"error": "internal_error"}), 200
@app.route("/admin/learn", methods=["POST"])
def admin_learn_toggle():
if not verify_auth(request): return jsonify({"error":"unauthorized"}), 401
data = request.get_json(force=True) or {}
chat_id = str(data.get("chat_id"))
enabled = bool(data.get("enabled", True))
min_sim = data.get("min_similarity")
ms = MIN_SIM_DEFAULT if min_sim is None else float(min_sim)
try:
sl.set_chat_config(chat_id, learn_enabled=enabled, min_similarity=ms)
except Exception as e:
print("[ERR] set_chat_config:\n", traceback.format_exc())
return jsonify({"ok": True, "learn_enabled": enabled})
@app.route("/admin/stats", methods=["GET"])
def admin_stats():
if not verify_auth(request): return jsonify({"error":"unauthorized"}), 401
chat_id = request.args.get("chat_id")
try:
c = sl.stats(chat_id)
except Exception:
print("[ERR] stats:\n", traceback.format_exc())
c = 0
return jsonify({"ok": True, "count": c})
if __name__ == "__main__":
app.run(host="0.0.0.0", port=9531)
|