Murtuza Saifee
Add code with the opensource model as well
d3bfde1
import os
import tempfile
import streamlit as st
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.embeddings.openai import OpenAIEmbeddings
from langchain.vectorstores import FAISS
from langchain.llms import OpenAI
from langchain.chains import RetrievalQA
from langchain.document_loaders import PyPDFLoader
from langchain.schema import Document
from dotenv import load_dotenv
# Load environment variables
load_dotenv()
os.environ["LANGCHAIN_API_KEY"] = os.getenv("LANGCHAIN_API_KEY")
os.environ["LANGCHAIN_TRACING_V2"] = "true"
os.environ["LANGCHAIN_PROJECT"]="Research-Paper-Summarizer"
# Streamlit Page Config
st.set_page_config(
page_title="Research Paper Summarizer",
layout="centered"
)
st.title("πŸ“š Research Paper Summarizer")
# File Uploader
uploaded_files = st.file_uploader(
"Upload one or more research PDFs",
type=["pdf"],
accept_multiple_files=True
)
# Initialize vector store in session state
if "vector_store" not in st.session_state:
st.session_state.vector_store = None
# Process PDFs and create/update the vector store
if st.button("Process PDFs") and uploaded_files:
all_documents = []
for file in uploaded_files:
# Save the file temporarily
with tempfile.NamedTemporaryFile(delete=False, suffix=".pdf") as temp_file:
temp_file.write(file.getvalue())
temp_file_path = temp_file.name
# Load the PDF using PyPDFLoader
loader = PyPDFLoader(temp_file_path)
pdf_docs = loader.load()
# Split text into manageable chunks
text_splitter = RecursiveCharacterTextSplitter(
chunk_size=1000,
chunk_overlap=300,
separators=["\n\n", "\n", " ", ""]
)
for doc in pdf_docs:
chunks = text_splitter.split_text(doc.page_content)
for chunk in chunks:
# Create Document object for each chunk
all_documents.append(Document(page_content=chunk, metadata=doc.metadata))
# Create vector store from documents
embeddings = OpenAIEmbeddings()
st.session_state.vector_store = FAISS.from_documents(
documents=all_documents,
embedding=embeddings
)
st.success("PDFs processed and vector store created! βœ…")
# Query + Summarize
query = st.text_input("Enter your question or summary request:")
if st.button("Get Summary/Answer"):
if st.session_state.vector_store is None:
st.warning("Please upload and process PDFs first.")
else:
# Create retriever and chain
retriever = st.session_state.vector_store.as_retriever(
search_type="similarity",
search_kwargs={"k": 5}
)
llm = OpenAI(temperature=0.0)
qa_chain = RetrievalQA.from_chain_type(
llm=llm,
chain_type="stuff",
retriever=retriever,
return_source_documents=True
)
# Execute query
result = qa_chain({"query": query})
# Display the result
st.markdown("### Answer:")
st.write(result["result"])
with st.expander("Show source documents"):
source_docs = result["source_documents"]
for i, doc in enumerate(source_docs):
st.markdown(f"**Source Document {i+1}:**")
st.write(doc.page_content)
st.write("---")