Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
Tom Aarsen
commited on
Commit
·
56def8a
1
Parent(s):
bd6a61b
Refactor gradio Tabs initialization
Browse files- .gitignore +1 -0
- app.py +343 -786
.gitignore
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
*.pyc
|
app.py
CHANGED
|
@@ -23,7 +23,7 @@ TASKS = [
|
|
| 23 |
]
|
| 24 |
|
| 25 |
TASK_LIST_BITEXT_MINING = ['BUCC (de-en)', 'BUCC (fr-en)', 'BUCC (ru-en)', 'BUCC (zh-en)', 'Tatoeba (afr-eng)', 'Tatoeba (amh-eng)', 'Tatoeba (ang-eng)', 'Tatoeba (ara-eng)', 'Tatoeba (arq-eng)', 'Tatoeba (arz-eng)', 'Tatoeba (ast-eng)', 'Tatoeba (awa-eng)', 'Tatoeba (aze-eng)', 'Tatoeba (bel-eng)', 'Tatoeba (ben-eng)', 'Tatoeba (ber-eng)', 'Tatoeba (bos-eng)', 'Tatoeba (bre-eng)', 'Tatoeba (bul-eng)', 'Tatoeba (cat-eng)', 'Tatoeba (cbk-eng)', 'Tatoeba (ceb-eng)', 'Tatoeba (ces-eng)', 'Tatoeba (cha-eng)', 'Tatoeba (cmn-eng)', 'Tatoeba (cor-eng)', 'Tatoeba (csb-eng)', 'Tatoeba (cym-eng)', 'Tatoeba (dan-eng)', 'Tatoeba (deu-eng)', 'Tatoeba (dsb-eng)', 'Tatoeba (dtp-eng)', 'Tatoeba (ell-eng)', 'Tatoeba (epo-eng)', 'Tatoeba (est-eng)', 'Tatoeba (eus-eng)', 'Tatoeba (fao-eng)', 'Tatoeba (fin-eng)', 'Tatoeba (fra-eng)', 'Tatoeba (fry-eng)', 'Tatoeba (gla-eng)', 'Tatoeba (gle-eng)', 'Tatoeba (glg-eng)', 'Tatoeba (gsw-eng)', 'Tatoeba (heb-eng)', 'Tatoeba (hin-eng)', 'Tatoeba (hrv-eng)', 'Tatoeba (hsb-eng)', 'Tatoeba (hun-eng)', 'Tatoeba (hye-eng)', 'Tatoeba (ido-eng)', 'Tatoeba (ile-eng)', 'Tatoeba (ina-eng)', 'Tatoeba (ind-eng)', 'Tatoeba (isl-eng)', 'Tatoeba (ita-eng)', 'Tatoeba (jav-eng)', 'Tatoeba (jpn-eng)', 'Tatoeba (kab-eng)', 'Tatoeba (kat-eng)', 'Tatoeba (kaz-eng)', 'Tatoeba (khm-eng)', 'Tatoeba (kor-eng)', 'Tatoeba (kur-eng)', 'Tatoeba (kzj-eng)', 'Tatoeba (lat-eng)', 'Tatoeba (lfn-eng)', 'Tatoeba (lit-eng)', 'Tatoeba (lvs-eng)', 'Tatoeba (mal-eng)', 'Tatoeba (mar-eng)', 'Tatoeba (max-eng)', 'Tatoeba (mhr-eng)', 'Tatoeba (mkd-eng)', 'Tatoeba (mon-eng)', 'Tatoeba (nds-eng)', 'Tatoeba (nld-eng)', 'Tatoeba (nno-eng)', 'Tatoeba (nob-eng)', 'Tatoeba (nov-eng)', 'Tatoeba (oci-eng)', 'Tatoeba (orv-eng)', 'Tatoeba (pam-eng)', 'Tatoeba (pes-eng)', 'Tatoeba (pms-eng)', 'Tatoeba (pol-eng)', 'Tatoeba (por-eng)', 'Tatoeba (ron-eng)', 'Tatoeba (rus-eng)', 'Tatoeba (slk-eng)', 'Tatoeba (slv-eng)', 'Tatoeba (spa-eng)', 'Tatoeba (sqi-eng)', 'Tatoeba (srp-eng)', 'Tatoeba (swe-eng)', 'Tatoeba (swg-eng)', 'Tatoeba (swh-eng)', 'Tatoeba (tam-eng)', 'Tatoeba (tat-eng)', 'Tatoeba (tel-eng)', 'Tatoeba (tgl-eng)', 'Tatoeba (tha-eng)', 'Tatoeba (tuk-eng)', 'Tatoeba (tur-eng)', 'Tatoeba (tzl-eng)', 'Tatoeba (uig-eng)', 'Tatoeba (ukr-eng)', 'Tatoeba (urd-eng)', 'Tatoeba (uzb-eng)', 'Tatoeba (vie-eng)', 'Tatoeba (war-eng)', 'Tatoeba (wuu-eng)', 'Tatoeba (xho-eng)', 'Tatoeba (yid-eng)', 'Tatoeba (yue-eng)', 'Tatoeba (zsm-eng)']
|
| 26 |
-
|
| 27 |
|
| 28 |
TASK_LIST_CLASSIFICATION = [
|
| 29 |
"AmazonCounterfactualClassification (en)",
|
|
@@ -1027,7 +1027,7 @@ def add_task(examples):
|
|
| 1027 |
examples["mteb_task"] = "STS"
|
| 1028 |
elif examples["mteb_dataset_name"] in norm(TASK_LIST_SUMMARIZATION + TASK_LIST_SUMMARIZATION_FR):
|
| 1029 |
examples["mteb_task"] = "Summarization"
|
| 1030 |
-
elif examples["mteb_dataset_name"] in norm(TASK_LIST_BITEXT_MINING +
|
| 1031 |
examples["mteb_task"] = "BitextMining"
|
| 1032 |
else:
|
| 1033 |
print("WARNING: Task not found for dataset", examples["mteb_dataset_name"])
|
|
@@ -1427,7 +1427,7 @@ get_mteb_average_fr()
|
|
| 1427 |
get_mteb_average_pl()
|
| 1428 |
get_mteb_average_zh()
|
| 1429 |
DATA_BITEXT_MINING = get_mteb_data(["BitextMining"], [], TASK_LIST_BITEXT_MINING)
|
| 1430 |
-
|
| 1431 |
DATA_CLASSIFICATION_DA = get_mteb_data(["Classification"], [], TASK_LIST_CLASSIFICATION_DA)
|
| 1432 |
DATA_CLASSIFICATION_NB = get_mteb_data(["Classification"], [], TASK_LIST_CLASSIFICATION_NB)
|
| 1433 |
DATA_CLASSIFICATION_SV = get_mteb_data(["Classification"], [], TASK_LIST_CLASSIFICATION_SV)
|
|
@@ -1442,7 +1442,7 @@ MODELS = []
|
|
| 1442 |
# LANGUAGES = []
|
| 1443 |
for d in [
|
| 1444 |
DATA_BITEXT_MINING,
|
| 1445 |
-
|
| 1446 |
DATA_CLASSIFICATION_EN,
|
| 1447 |
DATA_CLASSIFICATION_DA,
|
| 1448 |
DATA_CLASSIFICATION_FR,
|
|
@@ -1505,783 +1505,346 @@ table > tbody > tr > td:nth-child(2) > div {
|
|
| 1505 |
}
|
| 1506 |
"""
|
| 1507 |
|
| 1508 |
-
|
| 1509 |
-
|
| 1510 |
-
|
| 1511 |
-
|
| 1512 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1513 |
with gr.Tabs():
|
| 1514 |
-
|
| 1515 |
-
|
| 1516 |
-
|
| 1517 |
-
|
| 1518 |
-
|
| 1519 |
-
|
| 1520 |
-
|
| 1521 |
-
|
| 1522 |
-
|
| 1523 |
-
|
| 1524 |
-
|
| 1525 |
-
|
| 1526 |
-
|
| 1527 |
-
|
| 1528 |
-
|
| 1529 |
-
|
| 1530 |
-
|
| 1531 |
-
|
| 1532 |
-
|
| 1533 |
-
|
| 1534 |
-
|
| 1535 |
-
gr.Markdown("""
|
| 1536 |
-
**Overall MTEB Chinese leaderboard (C-MTEB)** 🔮🇨🇳
|
| 1537 |
-
|
| 1538 |
-
- **Metric:** Various, refer to task tabs
|
| 1539 |
-
- **Languages:** Chinese
|
| 1540 |
-
- **Credits:** [FlagEmbedding](https://github.com/FlagOpen/FlagEmbedding)
|
| 1541 |
-
""")
|
| 1542 |
-
with gr.Row():
|
| 1543 |
-
data_overall_zh = gr.components.Dataframe(
|
| 1544 |
-
DATA_OVERALL_ZH,
|
| 1545 |
-
datatype=["number", "markdown"] + ["number"] * len(DATA_OVERALL_ZH.columns),
|
| 1546 |
-
type="pandas",
|
| 1547 |
-
height=600,
|
| 1548 |
-
)
|
| 1549 |
-
with gr.Row():
|
| 1550 |
-
data_run_overall_zh = gr.Button("Refresh")
|
| 1551 |
-
data_run_overall_zh.click(get_mteb_average_zh, inputs=None, outputs=data_overall_zh)
|
| 1552 |
-
with gr.TabItem("French"):
|
| 1553 |
-
with gr.Row():
|
| 1554 |
-
gr.Markdown("""
|
| 1555 |
-
**Overall MTEB French leaderboard (F-MTEB)** 🔮🇫🇷
|
| 1556 |
-
|
| 1557 |
-
- **Metric:** Various, refer to task tabs
|
| 1558 |
-
- **Languages:** French
|
| 1559 |
-
- **Credits:** [Lyon-NLP](https://github.com/Lyon-NLP): [Gabriel Sequeira](https://github.com/GabrielSequeira), [Imene Kerboua](https://github.com/imenelydiaker), [Wissam Siblini](https://github.com/wissam-sib), [Mathieu Ciancone](https://github.com/MathieuCiancone), [Marion Schaeffer](https://github.com/schmarion)
|
| 1560 |
-
""")
|
| 1561 |
-
with gr.Row():
|
| 1562 |
-
data_overall_fr = gr.components.Dataframe(
|
| 1563 |
-
DATA_OVERALL_FR,
|
| 1564 |
-
datatype=["number", "markdown"] + ["number"] * len(DATA_OVERALL_FR.columns),
|
| 1565 |
-
type="pandas",
|
| 1566 |
-
height=600,
|
| 1567 |
-
)
|
| 1568 |
-
with gr.Row():
|
| 1569 |
-
data_overall_fr = gr.Button("Refresh")
|
| 1570 |
-
data_overall_fr.click(get_mteb_average_fr, inputs=None, outputs=data_overall_fr)
|
| 1571 |
-
with gr.TabItem("Polish"):
|
| 1572 |
-
with gr.Row():
|
| 1573 |
-
gr.Markdown("""
|
| 1574 |
-
**Overall MTEB Polish leaderboard (PL-MTEB)** 🔮🇵🇱
|
| 1575 |
-
|
| 1576 |
-
- **Metric:** Various, refer to task tabs
|
| 1577 |
-
- **Languages:** Polish
|
| 1578 |
-
- **Credits:** [Rafał Poświata](https://github.com/rafalposwiata), [Konrad Wojtasik](https://github.com/kwojtasi) & [BEIR-PL](https://arxiv.org/abs/2305.19840)
|
| 1579 |
-
""")
|
| 1580 |
-
with gr.Row():
|
| 1581 |
-
data_overall_pl = gr.components.Dataframe(
|
| 1582 |
-
DATA_OVERALL_PL,
|
| 1583 |
-
datatype=["number", "markdown"] + ["number"] * len(DATA_OVERALL_PL.columns),
|
| 1584 |
-
type="pandas",
|
| 1585 |
-
height=600,
|
| 1586 |
-
)
|
| 1587 |
-
with gr.Row():
|
| 1588 |
-
data_run_overall_pl = gr.Button("Refresh")
|
| 1589 |
-
data_run_overall_pl.click(get_mteb_average_pl, inputs=None, outputs=data_overall_pl)
|
| 1590 |
-
with gr.TabItem("Bitext Mining"):
|
| 1591 |
-
with gr.TabItem("English-X"):
|
| 1592 |
-
with gr.Row():
|
| 1593 |
-
gr.Markdown("""
|
| 1594 |
-
**Bitext Mining English-X Leaderboard** 🎌
|
| 1595 |
-
|
| 1596 |
-
- **Metric:** [F1](https://huggingface.co/spaces/evaluate-metric/f1)
|
| 1597 |
-
- **Languages:** 117 (Pairs of: English & other language)
|
| 1598 |
-
""")
|
| 1599 |
-
with gr.Row():
|
| 1600 |
-
data_bitext_mining = gr.components.Dataframe(
|
| 1601 |
-
DATA_BITEXT_MINING,
|
| 1602 |
-
datatype=["number", "markdown"] + ["number"] * len(DATA_BITEXT_MINING.columns),
|
| 1603 |
-
type="pandas",
|
| 1604 |
-
)
|
| 1605 |
-
with gr.Row():
|
| 1606 |
-
data_run_bitext_mining = gr.Button("Refresh")
|
| 1607 |
-
data_run_bitext_mining.click(
|
| 1608 |
-
partial(get_mteb_data, tasks=["BitextMining"], datasets=TASK_LIST_BITEXT_MINING),
|
| 1609 |
-
outputs=data_bitext_mining,
|
| 1610 |
-
)
|
| 1611 |
-
with gr.TabItem("Danish"):
|
| 1612 |
-
with gr.Row():
|
| 1613 |
-
gr.Markdown("""
|
| 1614 |
-
**Bitext Mining Danish Leaderboard** 🎌🇩🇰
|
| 1615 |
-
|
| 1616 |
-
- **Metric:** [F1](https://huggingface.co/spaces/evaluate-metric/f1)
|
| 1617 |
-
- **Languages:** Danish & Bornholmsk (Danish Dialect)
|
| 1618 |
-
- **Credits:** [Kenneth Enevoldsen](https://github.com/KennethEnevoldsen), [scandinavian-embedding-benchmark](https://kennethenevoldsen.github.io/scandinavian-embedding-benchmark/)
|
| 1619 |
-
""")
|
| 1620 |
-
with gr.Row():
|
| 1621 |
-
data_bitext_mining_da = gr.components.Dataframe(
|
| 1622 |
-
DATA_BITEXT_MINING_OTHER,
|
| 1623 |
-
datatype=["number", "markdown"] + ["number"] * len(DATA_BITEXT_MINING_OTHER.columns),
|
| 1624 |
-
type="pandas",
|
| 1625 |
-
)
|
| 1626 |
-
with gr.Row():
|
| 1627 |
-
data_run_bitext_mining_da = gr.Button("Refresh")
|
| 1628 |
-
data_run_bitext_mining_da.click(
|
| 1629 |
-
partial(get_mteb_data, tasks=["BitextMining"], datasets=TASK_LIST_BITEXT_MINING_OTHER),
|
| 1630 |
-
outputs=data_bitext_mining_da,
|
| 1631 |
-
)
|
| 1632 |
-
with gr.TabItem("Classification"):
|
| 1633 |
-
with gr.TabItem("English"):
|
| 1634 |
-
with gr.Row():
|
| 1635 |
-
gr.Markdown("""
|
| 1636 |
-
**Classification English Leaderboard** ❤️
|
| 1637 |
-
|
| 1638 |
-
- **Metric:** [Accuracy](https://huggingface.co/spaces/evaluate-metric/accuracy)
|
| 1639 |
-
- **Languages:** English
|
| 1640 |
-
""")
|
| 1641 |
-
with gr.Row():
|
| 1642 |
-
data_classification_en = gr.components.Dataframe(
|
| 1643 |
-
DATA_CLASSIFICATION_EN,
|
| 1644 |
-
datatype=["number", "markdown"] + ["number"] * len(DATA_CLASSIFICATION_EN.columns),
|
| 1645 |
-
type="pandas",
|
| 1646 |
-
)
|
| 1647 |
-
with gr.Row():
|
| 1648 |
-
data_run_classification_en = gr.Button("Refresh")
|
| 1649 |
-
data_run_classification_en.click(
|
| 1650 |
-
partial(get_mteb_data, tasks=["Classification"], langs=["en"]),
|
| 1651 |
-
outputs=data_classification_en,
|
| 1652 |
-
)
|
| 1653 |
-
with gr.TabItem("Chinese"):
|
| 1654 |
-
with gr.Row():
|
| 1655 |
-
gr.Markdown("""
|
| 1656 |
-
**Classification Chinese Leaderboard** 🧡🇨🇳
|
| 1657 |
-
|
| 1658 |
-
- **Metric:** [Accuracy](https://huggingface.co/spaces/evaluate-metric/accuracy)
|
| 1659 |
-
- **Languages:** Chinese
|
| 1660 |
-
- **Credits:** [FlagEmbedding](https://github.com/FlagOpen/FlagEmbedding)
|
| 1661 |
-
""")
|
| 1662 |
-
with gr.Row():
|
| 1663 |
-
data_classification_zh = gr.components.Dataframe(
|
| 1664 |
-
DATA_CLASSIFICATION_ZH,
|
| 1665 |
-
datatype=["number", "markdown"] + ["number"] * len(DATA_CLASSIFICATION_ZH.columns),
|
| 1666 |
-
type="pandas",
|
| 1667 |
-
)
|
| 1668 |
-
with gr.Row():
|
| 1669 |
-
data_run_classification_zh = gr.Button("Refresh")
|
| 1670 |
-
data_run_classification_zh.click(
|
| 1671 |
-
partial(get_mteb_data, tasks=["Classification"], datasets=TASK_LIST_CLASSIFICATION_ZH),
|
| 1672 |
-
outputs=data_classification_zh,
|
| 1673 |
-
)
|
| 1674 |
-
with gr.TabItem("Danish"):
|
| 1675 |
-
with gr.Row():
|
| 1676 |
-
gr.Markdown("""
|
| 1677 |
-
**Classification Danish Leaderboard** 🤍🇩🇰
|
| 1678 |
-
|
| 1679 |
-
- **Metric:** [Accuracy](https://huggingface.co/spaces/evaluate-metric/accuracy)
|
| 1680 |
-
- **Languages:** Danish
|
| 1681 |
-
- **Credits:** [Kenneth Enevoldsen](https://github.com/KennethEnevoldsen), [scandinavian-embedding-benchmark](https://kennethenevoldsen.github.io/scandinavian-embedding-benchmark/)
|
| 1682 |
-
""")
|
| 1683 |
-
with gr.Row():
|
| 1684 |
-
data_classification_da = gr.components.Dataframe(
|
| 1685 |
-
DATA_CLASSIFICATION_DA,
|
| 1686 |
-
datatype=["number", "markdown"] + ["number"] * len(DATA_CLASSIFICATION_DA.columns),
|
| 1687 |
-
type="pandas",
|
| 1688 |
-
)
|
| 1689 |
-
with gr.Row():
|
| 1690 |
-
data_run_classification_da = gr.Button("Refresh")
|
| 1691 |
-
data_run_classification_da.click(
|
| 1692 |
-
partial(get_mteb_data, tasks=["Classification"], datasets=TASK_LIST_CLASSIFICATION_DA),
|
| 1693 |
-
outputs=data_run_classification_da,
|
| 1694 |
-
)
|
| 1695 |
-
with gr.TabItem("French"):
|
| 1696 |
-
with gr.Row():
|
| 1697 |
-
gr.Markdown("""
|
| 1698 |
-
**Classification French Leaderboard** 💙🇫🇷
|
| 1699 |
-
|
| 1700 |
-
- **Metric:** [Accuracy](https://huggingface.co/spaces/evaluate-metric/accuracy)
|
| 1701 |
-
- **Languages:** French
|
| 1702 |
-
- **Credits:** [Lyon-NLP](https://github.com/Lyon-NLP): [Gabriel Sequeira](https://github.com/GabrielSequeira), [Imene Kerboua](https://github.com/imenelydiaker), [wissam-sib](https://github.com/wissam-sib), [Mathieu Ciancone](https://github.com/MathieuCiancone), [Marion Schaeffer](https://github.com/schmarion)
|
| 1703 |
-
""")
|
| 1704 |
-
with gr.Row():
|
| 1705 |
-
data_classification_fr = gr.components.Dataframe(
|
| 1706 |
-
DATA_CLASSIFICATION_FR,
|
| 1707 |
-
datatype=["number", "markdown"] + ["number"] * len(DATA_CLASSIFICATION_FR.columns),
|
| 1708 |
-
type="pandas",
|
| 1709 |
-
)
|
| 1710 |
-
with gr.Row():
|
| 1711 |
-
data_run_classification_fr = gr.Button("Refresh")
|
| 1712 |
-
data_run_classification_fr.click(
|
| 1713 |
-
partial(get_mteb_data, tasks=["Classification"], datasets=TASK_LIST_CLASSIFICATION_FR),
|
| 1714 |
-
outputs=data_run_classification_fr,
|
| 1715 |
-
)
|
| 1716 |
-
with gr.TabItem("Norwegian"):
|
| 1717 |
-
with gr.Row():
|
| 1718 |
-
gr.Markdown("""
|
| 1719 |
-
**Classification Norwegian Leaderboard** 💙🇳🇴
|
| 1720 |
-
|
| 1721 |
-
- **Metric:** [Accuracy](https://huggingface.co/spaces/evaluate-metric/accuracy)
|
| 1722 |
-
- **Languages:** Norwegian Bokmål
|
| 1723 |
-
- **Credits:** [Kenneth Enevoldsen](https://github.com/KennethEnevoldsen), [scandinavian-embedding-benchmark](https://kennethenevoldsen.github.io/scandinavian-embedding-benchmark/)
|
| 1724 |
-
""")
|
| 1725 |
-
with gr.Row():
|
| 1726 |
-
data_classification_nb = gr.components.Dataframe(
|
| 1727 |
-
DATA_CLASSIFICATION_NB,
|
| 1728 |
-
datatype=["number", "markdown"] + ["number"] * len(DATA_CLASSIFICATION_NB.columns),
|
| 1729 |
-
type="pandas",
|
| 1730 |
-
)
|
| 1731 |
-
with gr.Row():
|
| 1732 |
-
data_run_classification_nb = gr.Button("Refresh")
|
| 1733 |
-
data_run_classification_nb.click(
|
| 1734 |
-
partial(get_mteb_data, tasks=["Classification"], datasets=TASK_LIST_CLASSIFICATION_NB),
|
| 1735 |
-
outputs=data_classification_nb,
|
| 1736 |
-
)
|
| 1737 |
-
with gr.TabItem("Polish"):
|
| 1738 |
-
with gr.Row():
|
| 1739 |
-
gr.Markdown("""
|
| 1740 |
-
**Classification Polish Leaderboard** 🤍🇵🇱
|
| 1741 |
-
|
| 1742 |
-
- **Metric:** [Accuracy](https://huggingface.co/spaces/evaluate-metric/accuracy)
|
| 1743 |
-
- **Languages:** Polish
|
| 1744 |
-
- **Credits:** [Rafał Poświata](https://github.com/rafalposwiata)
|
| 1745 |
-
""")
|
| 1746 |
-
with gr.Row():
|
| 1747 |
-
data_classification_pl = gr.components.Dataframe(
|
| 1748 |
-
DATA_CLASSIFICATION_PL,
|
| 1749 |
-
datatype=["number", "markdown"] + ["number"] * len(DATA_CLASSIFICATION_PL.columns),
|
| 1750 |
-
type="pandas",
|
| 1751 |
-
)
|
| 1752 |
-
with gr.Row():
|
| 1753 |
-
data_run_classification_pl = gr.Button("Refresh")
|
| 1754 |
-
data_run_classification_pl.click(
|
| 1755 |
-
partial(get_mteb_data, tasks=["Classification"], datasets=TASK_LIST_CLASSIFICATION_PL),
|
| 1756 |
-
outputs=data_classification_pl,
|
| 1757 |
-
)
|
| 1758 |
-
with gr.TabItem("Swedish"):
|
| 1759 |
-
with gr.Row():
|
| 1760 |
-
gr.Markdown("""
|
| 1761 |
-
**Classification Swedish Leaderboard** 💛🇸🇪
|
| 1762 |
-
|
| 1763 |
-
- **Metric:** [Accuracy](https://huggingface.co/spaces/evaluate-metric/accuracy)
|
| 1764 |
-
- **Languages:** Swedish
|
| 1765 |
-
- **Credits:** [Kenneth Enevoldsen](https://github.com/KennethEnevoldsen), [scandinavian-embedding-benchmark](https://kennethenevoldsen.github.io/scandinavian-embedding-benchmark/)
|
| 1766 |
-
""")
|
| 1767 |
-
with gr.Row():
|
| 1768 |
-
data_classification_sv = gr.components.Dataframe(
|
| 1769 |
-
DATA_CLASSIFICATION_SV,
|
| 1770 |
-
datatype=["number", "markdown"] + ["number"] * len(DATA_CLASSIFICATION_SV.columns),
|
| 1771 |
-
type="pandas",
|
| 1772 |
-
)
|
| 1773 |
-
with gr.Row():
|
| 1774 |
-
data_run_classification_sv = gr.Button("Refresh")
|
| 1775 |
-
data_run_classification_sv.click(
|
| 1776 |
-
partial(get_mteb_data, tasks=["Classification"], datasets=TASK_LIST_CLASSIFICATION_SV),
|
| 1777 |
-
outputs=data_classification_sv,
|
| 1778 |
-
)
|
| 1779 |
-
with gr.TabItem("Other"):
|
| 1780 |
-
with gr.Row():
|
| 1781 |
-
gr.Markdown("""
|
| 1782 |
-
**Classification Other Languages Leaderboard** 💜💚💙
|
| 1783 |
-
|
| 1784 |
-
- **Metric:** [Accuracy](https://huggingface.co/spaces/evaluate-metric/accuracy)
|
| 1785 |
-
- **Languages:** 47 (Only languages not included in the other tabs)
|
| 1786 |
-
""")
|
| 1787 |
-
with gr.Row():
|
| 1788 |
-
data_classification = gr.components.Dataframe(
|
| 1789 |
-
DATA_CLASSIFICATION_OTHER,
|
| 1790 |
-
datatype=["number", "markdown"] + ["number"] * len(DATA_CLASSIFICATION_OTHER) * 10,
|
| 1791 |
-
type="pandas",
|
| 1792 |
-
)
|
| 1793 |
-
with gr.Row():
|
| 1794 |
-
data_run_classification = gr.Button("Refresh")
|
| 1795 |
-
data_run_classification.click(
|
| 1796 |
-
partial(get_mteb_data, tasks=["Classification"], datasets=TASK_LIST_CLASSIFICATION_OTHER),
|
| 1797 |
-
outputs=data_classification,
|
| 1798 |
-
)
|
| 1799 |
-
with gr.TabItem("Clustering"):
|
| 1800 |
-
with gr.TabItem("English"):
|
| 1801 |
-
with gr.Row():
|
| 1802 |
-
gr.Markdown("""
|
| 1803 |
-
**Clustering Leaderboard** ✨
|
| 1804 |
-
|
| 1805 |
-
- **Metric:** Validity Measure (v_measure)
|
| 1806 |
-
- **Languages:** English
|
| 1807 |
-
""")
|
| 1808 |
-
with gr.Row():
|
| 1809 |
-
data_clustering = gr.components.Dataframe(
|
| 1810 |
-
DATA_CLUSTERING,
|
| 1811 |
-
datatype=["number", "markdown"] + ["number"] * len(DATA_CLUSTERING.columns),
|
| 1812 |
-
type="pandas",
|
| 1813 |
-
)
|
| 1814 |
-
with gr.Row():
|
| 1815 |
-
data_run_clustering_en = gr.Button("Refresh")
|
| 1816 |
-
data_run_clustering_en.click(
|
| 1817 |
-
partial(get_mteb_data, tasks=["Clustering"], datasets=TASK_LIST_CLUSTERING),
|
| 1818 |
-
outputs=data_clustering,
|
| 1819 |
-
)
|
| 1820 |
-
with gr.TabItem("Chinese"):
|
| 1821 |
-
with gr.Row():
|
| 1822 |
-
gr.Markdown("""
|
| 1823 |
-
**Clustering Chinese Leaderboard** ✨🇨🇳
|
| 1824 |
-
|
| 1825 |
-
- **Metric:** Validity Measure (v_measure)
|
| 1826 |
-
- **Languages:** Chinese
|
| 1827 |
-
- **Credits:** [FlagEmbedding](https://github.com/FlagOpen/FlagEmbedding)
|
| 1828 |
-
""")
|
| 1829 |
-
with gr.Row():
|
| 1830 |
-
data_clustering_zh = gr.components.Dataframe(
|
| 1831 |
-
DATA_CLUSTERING_ZH,
|
| 1832 |
-
datatype=["number", "markdown"] + ["number"] * len(DATA_CLUSTERING_ZH.columns),
|
| 1833 |
-
type="pandas",
|
| 1834 |
-
)
|
| 1835 |
-
with gr.Row():
|
| 1836 |
-
data_run_clustering_zh = gr.Button("Refresh")
|
| 1837 |
-
data_run_clustering_zh.click(
|
| 1838 |
-
partial(get_mteb_data, tasks=["Clustering"], datasets=TASK_LIST_CLUSTERING_ZH),
|
| 1839 |
-
outputs=data_clustering_zh,
|
| 1840 |
-
)
|
| 1841 |
-
with gr.TabItem("French"):
|
| 1842 |
-
with gr.Row():
|
| 1843 |
-
gr.Markdown("""
|
| 1844 |
-
**Clustering French Leaderboard** ✨🇫🇷
|
| 1845 |
-
|
| 1846 |
-
- **Metric:** Validity Measure (v_measure)
|
| 1847 |
-
- **Languages:** French
|
| 1848 |
-
- **Credits:** [Lyon-NLP](https://github.com/Lyon-NLP): [Gabriel Sequeira](https://github.com/GabrielSequeira), [Imene Kerboua](https://github.com/imenelydiaker), [wissam-sib](https://github.com/wissam-sib), [Mathieu Ciancone](https://github.com/MathieuCiancone), [Marion Schaeffer](https://github.com/schmarion)
|
| 1849 |
-
""")
|
| 1850 |
-
with gr.Row():
|
| 1851 |
-
data_clustering_fr = gr.components.Dataframe(
|
| 1852 |
-
DATA_CLUSTERING_FR,
|
| 1853 |
-
datatype=["number", "markdown"] + ["number"] * len(DATA_CLUSTERING_FR.columns),
|
| 1854 |
-
type="pandas",
|
| 1855 |
-
)
|
| 1856 |
-
with gr.Row():
|
| 1857 |
-
data_run_clustering_fr = gr.Button("Refresh")
|
| 1858 |
-
data_run_clustering_fr.click(
|
| 1859 |
-
partial(get_mteb_data, tasks=["Clustering"], datasets=TASK_LIST_CLUSTERING_FR),
|
| 1860 |
-
outputs=data_clustering_fr,
|
| 1861 |
-
)
|
| 1862 |
-
with gr.TabItem("German"):
|
| 1863 |
-
with gr.Row():
|
| 1864 |
-
gr.Markdown("""
|
| 1865 |
-
**Clustering German Leaderboard** ✨🇩🇪
|
| 1866 |
-
|
| 1867 |
-
- **Metric:** Validity Measure (v_measure)
|
| 1868 |
-
- **Languages:** German
|
| 1869 |
-
- **Credits:** [Silvan](https://github.com/slvnwhrl)
|
| 1870 |
-
""")
|
| 1871 |
-
with gr.Row():
|
| 1872 |
-
data_clustering_de = gr.components.Dataframe(
|
| 1873 |
-
DATA_CLUSTERING_DE,
|
| 1874 |
-
datatype=["number", "markdown"] + ["number"] * len(DATA_CLUSTERING_DE.columns) * 2,
|
| 1875 |
-
type="pandas",
|
| 1876 |
-
)
|
| 1877 |
-
with gr.Row():
|
| 1878 |
-
data_run_clustering_de = gr.Button("Refresh")
|
| 1879 |
-
data_run_clustering_de.click(
|
| 1880 |
-
partial(get_mteb_data, tasks=["Clustering"], datasets=TASK_LIST_CLUSTERING_DE),
|
| 1881 |
-
outputs=data_clustering_de,
|
| 1882 |
-
)
|
| 1883 |
-
with gr.TabItem("Polish"):
|
| 1884 |
-
with gr.Row():
|
| 1885 |
-
gr.Markdown("""
|
| 1886 |
-
**Clustering Polish Leaderboard** ✨🇵🇱
|
| 1887 |
-
|
| 1888 |
-
- **Metric:** Validity Measure (v_measure)
|
| 1889 |
-
- **Languages:** Polish
|
| 1890 |
-
- **Credits:** [Rafał Poświata](https://github.com/rafalposwiata)
|
| 1891 |
-
""")
|
| 1892 |
-
with gr.Row():
|
| 1893 |
-
data_clustering_pl = gr.components.Dataframe(
|
| 1894 |
-
DATA_CLUSTERING_PL,
|
| 1895 |
-
datatype=["number", "markdown"] + ["number"] * len(DATA_CLUSTERING_PL.columns) * 2,
|
| 1896 |
-
type="pandas",
|
| 1897 |
-
)
|
| 1898 |
-
with gr.Row():
|
| 1899 |
-
data_run_clustering_pl = gr.Button("Refresh")
|
| 1900 |
-
data_run_clustering_pl.click(
|
| 1901 |
-
partial(get_mteb_data, tasks=["Clustering"], datasets=TASK_LIST_CLUSTERING_PL),
|
| 1902 |
-
outputs=data_clustering_pl,
|
| 1903 |
-
)
|
| 1904 |
-
with gr.TabItem("Pair Classification"):
|
| 1905 |
-
with gr.TabItem("English"):
|
| 1906 |
-
with gr.Row():
|
| 1907 |
-
gr.Markdown("""
|
| 1908 |
-
**Pair Classification English Leaderboard** 🎭
|
| 1909 |
-
|
| 1910 |
-
- **Metric:** Average Precision based on Cosine Similarities (cos_sim_ap)
|
| 1911 |
-
- **Languages:** English
|
| 1912 |
-
""")
|
| 1913 |
-
with gr.Row():
|
| 1914 |
-
data_pair_classification = gr.components.Dataframe(
|
| 1915 |
-
DATA_PAIR_CLASSIFICATION,
|
| 1916 |
-
datatype=["number", "markdown"] + ["number"] * len(DATA_PAIR_CLASSIFICATION.columns),
|
| 1917 |
-
type="pandas",
|
| 1918 |
-
)
|
| 1919 |
-
with gr.Row():
|
| 1920 |
-
data_run_pair_classification = gr.Button("Refresh")
|
| 1921 |
-
data_run_pair_classification.click(
|
| 1922 |
-
partial(get_mteb_data, tasks=["PairClassification"], datasets=TASK_LIST_PAIR_CLASSIFICATION),
|
| 1923 |
-
outputs=data_pair_classification,
|
| 1924 |
-
)
|
| 1925 |
-
with gr.TabItem("Chinese"):
|
| 1926 |
-
with gr.Row():
|
| 1927 |
-
gr.Markdown("""
|
| 1928 |
-
**Pair Classification Chinese Leaderboard** 🎭🇨🇳
|
| 1929 |
-
|
| 1930 |
-
- **Metric:** Average Precision based on Cosine Similarities (cos_sim_ap)
|
| 1931 |
-
- **Languages:** Chinese
|
| 1932 |
-
- **Credits:** [FlagEmbedding](https://github.com/FlagOpen/FlagEmbedding)
|
| 1933 |
-
""")
|
| 1934 |
-
with gr.Row():
|
| 1935 |
-
data_pair_classification_zh = gr.components.Dataframe(
|
| 1936 |
-
DATA_PAIR_CLASSIFICATION_ZH,
|
| 1937 |
-
datatype=["number", "markdown"] + ["number"] * len(DATA_PAIR_CLASSIFICATION_ZH.columns),
|
| 1938 |
-
type="pandas",
|
| 1939 |
-
)
|
| 1940 |
-
with gr.Row():
|
| 1941 |
-
data_run_pair_classification_zh = gr.Button("Refresh")
|
| 1942 |
-
data_run_pair_classification_zh.click(
|
| 1943 |
-
partial(get_mteb_data, tasks=["PairClassification"], datasets=TASK_LIST_PAIR_CLASSIFICATION_ZH),
|
| 1944 |
-
outputs=data_pair_classification_zh,
|
| 1945 |
-
)
|
| 1946 |
-
with gr.TabItem("French"):
|
| 1947 |
-
with gr.Row():
|
| 1948 |
-
gr.Markdown("""
|
| 1949 |
-
**Pair Classification French Leaderboard** 🎭🇫🇷
|
| 1950 |
-
|
| 1951 |
-
- **Metric:** Average Precision based on Cosine Similarities (cos_sim_ap)
|
| 1952 |
-
- **Languages:** French
|
| 1953 |
-
- **Credits:** [Lyon-NLP](https://github.com/Lyon-NLP): [Gabriel Sequeira](https://github.com/GabrielSequeira), [Imene Kerboua](https://github.com/imenelydiaker), [wissam-sib](https://github.com/wissam-sib), [Mathieu Ciancone](https://github.com/MathieuCiancone), [Marion Schaeffer](https://github.com/schmarion)
|
| 1954 |
-
""")
|
| 1955 |
-
with gr.Row():
|
| 1956 |
-
data_pair_classification_fr = gr.components.Dataframe(
|
| 1957 |
-
DATA_PAIR_CLASSIFICATION_FR,
|
| 1958 |
-
datatype=["number", "markdown"] + ["number"] * len(DATA_PAIR_CLASSIFICATION_FR.columns),
|
| 1959 |
-
type="pandas",
|
| 1960 |
-
)
|
| 1961 |
-
with gr.Row():
|
| 1962 |
-
data_run_pair_classification_fr = gr.Button("Refresh")
|
| 1963 |
-
data_run_pair_classification_fr.click(
|
| 1964 |
-
partial(get_mteb_data, tasks=["PairClassification"], datasets=TASK_LIST_PAIR_CLASSIFICATION_FR),
|
| 1965 |
-
outputs=data_pair_classification_fr,
|
| 1966 |
-
)
|
| 1967 |
-
with gr.TabItem("Polish"):
|
| 1968 |
-
with gr.Row():
|
| 1969 |
-
gr.Markdown("""
|
| 1970 |
-
**Pair Classification Polish Leaderboard** 🎭🇵🇱
|
| 1971 |
-
|
| 1972 |
-
- **Metric:** Average Precision based on Cosine Similarities (cos_sim_ap)
|
| 1973 |
-
- **Languages:** Polish
|
| 1974 |
-
- **Credits:** [Rafał Poświata](https://github.com/rafalposwiata)
|
| 1975 |
-
""")
|
| 1976 |
-
with gr.Row():
|
| 1977 |
-
data_pair_classification_pl = gr.components.Dataframe(
|
| 1978 |
-
DATA_PAIR_CLASSIFICATION_PL,
|
| 1979 |
-
datatype=["number", "markdown"] + ["number"] * len(DATA_PAIR_CLASSIFICATION_PL.columns),
|
| 1980 |
-
type="pandas",
|
| 1981 |
-
)
|
| 1982 |
-
with gr.Row():
|
| 1983 |
-
data_run_pair_classification_pl = gr.Button("Refresh")
|
| 1984 |
-
data_run_pair_classification_pl.click(
|
| 1985 |
-
partial(get_mteb_data, tasks=["PairClassification"], datasets=TASK_LIST_PAIR_CLASSIFICATION_PL),
|
| 1986 |
-
outputs=data_pair_classification_pl,
|
| 1987 |
-
)
|
| 1988 |
-
with gr.TabItem("Reranking"):
|
| 1989 |
-
with gr.TabItem("English"):
|
| 1990 |
-
with gr.Row():
|
| 1991 |
-
gr.Markdown("""
|
| 1992 |
-
**Reranking English Leaderboard** 🥈
|
| 1993 |
-
|
| 1994 |
-
- **Metric:** Mean Average Precision (MAP)
|
| 1995 |
-
- **Languages:** English
|
| 1996 |
-
""")
|
| 1997 |
-
with gr.Row():
|
| 1998 |
-
data_reranking = gr.components.Dataframe(
|
| 1999 |
-
DATA_RERANKING,
|
| 2000 |
-
datatype=["number", "markdown"] + ["number"] * len(DATA_RERANKING.columns),
|
| 2001 |
-
type="pandas",
|
| 2002 |
-
)
|
| 2003 |
-
with gr.Row():
|
| 2004 |
-
data_run_reranking = gr.Button("Refresh")
|
| 2005 |
-
data_run_reranking.click(
|
| 2006 |
-
partial(get_mteb_data, tasks=["Reranking"], datasets=TASK_LIST_RERANKING),
|
| 2007 |
-
outputs=data_reranking,
|
| 2008 |
-
)
|
| 2009 |
-
with gr.TabItem("Chinese"):
|
| 2010 |
-
with gr.Row():
|
| 2011 |
-
gr.Markdown("""
|
| 2012 |
-
**Reranking Chinese Leaderboard** 🥈🇨🇳
|
| 2013 |
-
|
| 2014 |
-
- **Metric:** Mean Average Precision (MAP)
|
| 2015 |
-
- **Languages:** Chinese
|
| 2016 |
-
- **Credits:** [FlagEmbedding](https://github.com/FlagOpen/FlagEmbedding)
|
| 2017 |
-
""")
|
| 2018 |
-
with gr.Row():
|
| 2019 |
-
data_reranking_zh = gr.components.Dataframe(
|
| 2020 |
-
DATA_RERANKING_ZH,
|
| 2021 |
-
datatype=["number", "markdown"] + ["number"] * len(DATA_RERANKING_ZH.columns),
|
| 2022 |
-
type="pandas",
|
| 2023 |
-
)
|
| 2024 |
-
with gr.Row():
|
| 2025 |
-
data_run_reranking_zh = gr.Button("Refresh")
|
| 2026 |
-
data_run_reranking_zh.click(
|
| 2027 |
-
partial(get_mteb_data, tasks=["Reranking"], datasets=TASK_LIST_RERANKING_ZH),
|
| 2028 |
-
outputs=data_reranking_zh,
|
| 2029 |
-
)
|
| 2030 |
-
with gr.TabItem("French"):
|
| 2031 |
-
with gr.Row():
|
| 2032 |
-
gr.Markdown("""
|
| 2033 |
-
**Reranking French Leaderboard** 🥈🇫🇷
|
| 2034 |
-
|
| 2035 |
-
- **Metric:** Mean Average Precision (MAP)
|
| 2036 |
-
- **Languages:** French
|
| 2037 |
-
- **Credits:** [Lyon-NLP](https://github.com/Lyon-NLP): [Gabriel Sequeira](https://github.com/GabrielSequeira), [Imene Kerboua](https://github.com/imenelydiaker), [wissam-sib](https://github.com/wissam-sib), [Mathieu Ciancone](https://github.com/MathieuCiancone), [Marion Schaeffer](https://github.com/schmarion)
|
| 2038 |
-
""")
|
| 2039 |
-
with gr.Row():
|
| 2040 |
-
data_reranking_fr = gr.components.Dataframe(
|
| 2041 |
-
DATA_RERANKING_FR,
|
| 2042 |
-
datatype=["number", "markdown"] + ["number"] * len(DATA_RERANKING_FR.columns),
|
| 2043 |
-
type="pandas",
|
| 2044 |
-
)
|
| 2045 |
-
with gr.Row():
|
| 2046 |
-
data_run_reranking_fr = gr.Button("Refresh")
|
| 2047 |
-
data_run_reranking_fr.click(
|
| 2048 |
-
partial(get_mteb_data, tasks=["Reranking"], datasets=TASK_LIST_RERANKING_FR),
|
| 2049 |
-
outputs=data_reranking_fr,
|
| 2050 |
-
)
|
| 2051 |
-
with gr.TabItem("Retrieval"):
|
| 2052 |
-
with gr.TabItem("English"):
|
| 2053 |
-
with gr.Row():
|
| 2054 |
-
gr.Markdown("""
|
| 2055 |
-
**Retrieval English Leaderboard** 🔎
|
| 2056 |
-
|
| 2057 |
-
- **Metric:** Normalized Discounted Cumulative Gain @ k (ndcg_at_10)
|
| 2058 |
-
- **Languages:** English
|
| 2059 |
-
""")
|
| 2060 |
-
with gr.Row():
|
| 2061 |
-
data_retrieval = gr.components.Dataframe(
|
| 2062 |
-
DATA_RETRIEVAL,
|
| 2063 |
-
# Add support for more columns than existing as a buffer for CQADupstack & other Retrieval tasks (e.g. MSMARCOv2)
|
| 2064 |
-
datatype=["number", "markdown"] + ["number"] * len(DATA_RETRIEVAL.columns) * 2,
|
| 2065 |
-
type="pandas",
|
| 2066 |
-
)
|
| 2067 |
-
with gr.Row():
|
| 2068 |
-
data_run_retrieval = gr.Button("Refresh")
|
| 2069 |
-
data_run_retrieval.click(
|
| 2070 |
-
partial(get_mteb_data, tasks=["Retrieval"], datasets=TASK_LIST_RETRIEVAL),
|
| 2071 |
-
outputs=data_retrieval,
|
| 2072 |
-
)
|
| 2073 |
-
with gr.TabItem("Chinese"):
|
| 2074 |
-
with gr.Row():
|
| 2075 |
-
gr.Markdown("""
|
| 2076 |
-
**Retrieval Chinese Leaderboard** 🔎🇨🇳
|
| 2077 |
-
|
| 2078 |
-
- **Metric:** Normalized Discounted Cumulative Gain @ k (ndcg_at_10)
|
| 2079 |
-
- **Languages:** Chinese
|
| 2080 |
-
- **Credits:** [FlagEmbedding](https://github.com/FlagOpen/FlagEmbedding)
|
| 2081 |
-
""")
|
| 2082 |
-
with gr.Row():
|
| 2083 |
-
data_retrieval_zh = gr.components.Dataframe(
|
| 2084 |
-
DATA_RETRIEVAL_ZH,
|
| 2085 |
-
# Add support for more columns than existing as a buffer for CQADupstack & other Retrieval tasks (e.g. MSMARCOv2)
|
| 2086 |
-
datatype=["number", "markdown"] + ["number"] * len(DATA_RETRIEVAL_ZH.columns) * 2,
|
| 2087 |
-
type="pandas",
|
| 2088 |
-
)
|
| 2089 |
-
with gr.Row():
|
| 2090 |
-
data_run_retrieval_zh = gr.Button("Refresh")
|
| 2091 |
-
data_run_retrieval_zh.click(
|
| 2092 |
-
partial(get_mteb_data, tasks=["Retrieval"], datasets=TASK_LIST_RETRIEVAL_ZH),
|
| 2093 |
-
outputs=data_retrieval_zh,
|
| 2094 |
-
)
|
| 2095 |
-
with gr.TabItem("French"):
|
| 2096 |
-
with gr.Row():
|
| 2097 |
-
gr.Markdown("""
|
| 2098 |
-
**Retrieval French Leaderboard** 🔎🇫🇷
|
| 2099 |
-
|
| 2100 |
-
- **Metric:** Normalized Discounted Cumulative Gain @ k (ndcg_at_10)
|
| 2101 |
-
- **Languages:** French
|
| 2102 |
-
- **Credits:** [Lyon-NLP](https://github.com/Lyon-NLP): [Gabriel Sequeira](https://github.com/GabrielSequeira), [Imene Kerboua](https://github.com/imenelydiaker), [wissam-sib](https://github.com/wissam-sib), [Mathieu Ciancone](https://github.com/MathieuCiancone), [Marion Schaeffer](https://github.com/schmarion)
|
| 2103 |
-
""")
|
| 2104 |
-
with gr.Row():
|
| 2105 |
-
data_retrieval_fr = gr.components.Dataframe(
|
| 2106 |
-
DATA_RETRIEVAL_FR,
|
| 2107 |
-
# Add support for more columns than existing as a buffer for CQADupstack & other Retrieval tasks (e.g. MSMARCOv2)
|
| 2108 |
-
datatype=["number", "markdown"] + ["number"] * len(DATA_RETRIEVAL_FR.columns) * 2,
|
| 2109 |
-
type="pandas",
|
| 2110 |
-
)
|
| 2111 |
-
with gr.Row():
|
| 2112 |
-
data_run_retrieval_fr = gr.Button("Refresh")
|
| 2113 |
-
data_run_retrieval_fr.click(
|
| 2114 |
-
partial(get_mteb_data, tasks=["Retrieval"], datasets=TASK_LIST_RETRIEVAL_FR),
|
| 2115 |
-
outputs=data_retrieval_fr,
|
| 2116 |
-
)
|
| 2117 |
-
with gr.TabItem("Polish"):
|
| 2118 |
-
with gr.Row():
|
| 2119 |
-
gr.Markdown("""
|
| 2120 |
-
**Retrieval Polish Leaderboard** 🔎🇵🇱
|
| 2121 |
-
|
| 2122 |
-
- **Metric:** Normalized Discounted Cumulative Gain @ k (ndcg_at_10)
|
| 2123 |
-
- **Languages:** Polish
|
| 2124 |
-
- **Credits:** [Konrad Wojtasik](https://github.com/kwojtasi) & [BEIR-PL](https://arxiv.org/abs/2305.19840)
|
| 2125 |
-
""")
|
| 2126 |
-
with gr.Row():
|
| 2127 |
-
data_retrieval_pl = gr.components.Dataframe(
|
| 2128 |
-
DATA_RETRIEVAL_PL,
|
| 2129 |
-
# Add support for more columns than existing as a buffer for CQADupstack & other Retrieval tasks (e.g. MSMARCOv2)
|
| 2130 |
-
datatype=["number", "markdown"] + ["number"] * len(DATA_RETRIEVAL_PL.columns) * 2,
|
| 2131 |
-
type="pandas",
|
| 2132 |
-
)
|
| 2133 |
-
with gr.Row():
|
| 2134 |
-
data_run_retrieval_pl = gr.Button("Refresh")
|
| 2135 |
-
data_run_retrieval_pl.click(
|
| 2136 |
-
partial(get_mteb_data, tasks=["Retrieval"], datasets=TASK_LIST_RETRIEVAL_PL),
|
| 2137 |
-
outputs=data_retrieval_pl,
|
| 2138 |
-
)
|
| 2139 |
-
with gr.TabItem("STS"):
|
| 2140 |
-
with gr.TabItem("English"):
|
| 2141 |
-
with gr.Row():
|
| 2142 |
-
gr.Markdown("""
|
| 2143 |
-
**STS English Leaderboard** 🤖
|
| 2144 |
-
|
| 2145 |
-
- **Metric:** Spearman correlation based on cosine similarity
|
| 2146 |
-
- **Languages:** English
|
| 2147 |
-
""")
|
| 2148 |
-
with gr.Row():
|
| 2149 |
-
data_sts_en = gr.components.Dataframe(
|
| 2150 |
-
DATA_STS_EN,
|
| 2151 |
-
datatype=["number", "markdown"] + ["number"] * len(DATA_STS_EN.columns),
|
| 2152 |
-
type="pandas",
|
| 2153 |
-
)
|
| 2154 |
-
with gr.Row():
|
| 2155 |
-
data_run_sts_en = gr.Button("Refresh")
|
| 2156 |
-
data_run_sts_en.click(
|
| 2157 |
-
partial(get_mteb_data, tasks=["STS"], datasets=TASK_LIST_STS),
|
| 2158 |
-
outputs=data_sts_en,
|
| 2159 |
-
)
|
| 2160 |
-
with gr.TabItem("Chinese"):
|
| 2161 |
-
with gr.Row():
|
| 2162 |
-
gr.Markdown("""
|
| 2163 |
-
**STS Chinese Leaderboard** 🤖🇨🇳
|
| 2164 |
-
|
| 2165 |
-
- **Metric:** Spearman correlation based on cosine similarity
|
| 2166 |
-
- **Languages:** Chinese
|
| 2167 |
-
- **Credits:** [FlagEmbedding](https://github.com/FlagOpen/FlagEmbedding)
|
| 2168 |
-
""")
|
| 2169 |
-
with gr.Row():
|
| 2170 |
-
data_sts_zh = gr.components.Dataframe(
|
| 2171 |
-
DATA_STS_ZH,
|
| 2172 |
-
datatype=["number", "markdown"] + ["number"] * len(DATA_STS_ZH.columns),
|
| 2173 |
-
type="pandas",
|
| 2174 |
-
)
|
| 2175 |
-
with gr.Row():
|
| 2176 |
-
data_run_sts_zh = gr.Button("Refresh")
|
| 2177 |
-
data_run_sts_zh.click(
|
| 2178 |
-
partial(get_mteb_data, tasks=["STS"], datasets=TASK_LIST_STS_ZH),
|
| 2179 |
-
outputs=data_sts_zh,
|
| 2180 |
-
)
|
| 2181 |
-
with gr.TabItem("French"):
|
| 2182 |
-
with gr.Row():
|
| 2183 |
-
gr.Markdown("""
|
| 2184 |
-
**STS French Leaderboard** 🤖🇫🇷
|
| 2185 |
-
|
| 2186 |
-
- **Metric:** Spearman correlation based on cosine similarity
|
| 2187 |
-
- **Languages:** French
|
| 2188 |
-
- **Credits:** [Lyon-NLP](https://github.com/Lyon-NLP): [Gabriel Sequeira](https://github.com/GabrielSequeira), [Imene Kerboua](https://github.com/imenelydiaker), [wissam-sib](https://github.com/wissam-sib), [Mathieu Ciancone](https://github.com/MathieuCiancone), [Marion Schaeffer](https://github.com/schmarion)
|
| 2189 |
-
""")
|
| 2190 |
-
with gr.Row():
|
| 2191 |
-
data_sts_fr = gr.components.Dataframe(
|
| 2192 |
-
DATA_STS_FR,
|
| 2193 |
-
datatype=["number", "markdown"] + ["number"] * len(DATA_STS_FR.columns),
|
| 2194 |
-
type="pandas",
|
| 2195 |
-
)
|
| 2196 |
-
with gr.Row():
|
| 2197 |
-
data_run_sts_fr = gr.Button("Refresh")
|
| 2198 |
-
data_run_sts_fr.click(
|
| 2199 |
-
partial(get_mteb_data, tasks=["STS"], datasets=TASK_LIST_STS_FR),
|
| 2200 |
-
outputs=data_sts_fr,
|
| 2201 |
-
)
|
| 2202 |
-
with gr.TabItem("Polish"):
|
| 2203 |
-
with gr.Row():
|
| 2204 |
-
gr.Markdown("""
|
| 2205 |
-
**STS Polish Leaderboard** 🤖🇵🇱
|
| 2206 |
-
|
| 2207 |
-
- **Metric:** Spearman correlation based on cosine similarity
|
| 2208 |
-
- **Languages:** Polish
|
| 2209 |
-
- **Credits:** [Rafał Poświata](https://github.com/rafalposwiata)
|
| 2210 |
-
""")
|
| 2211 |
-
with gr.Row():
|
| 2212 |
-
data_sts_pl = gr.components.Dataframe(
|
| 2213 |
-
DATA_STS_PL,
|
| 2214 |
-
datatype=["number", "markdown"] + ["number"] * len(DATA_STS_PL.columns),
|
| 2215 |
-
type="pandas",
|
| 2216 |
-
)
|
| 2217 |
-
with gr.Row():
|
| 2218 |
-
data_run_sts_pl = gr.Button("Refresh")
|
| 2219 |
-
data_run_sts_pl.click(
|
| 2220 |
-
partial(get_mteb_data, tasks=["STS"], datasets=TASK_LIST_STS_PL),
|
| 2221 |
-
outputs=data_sts_pl,
|
| 2222 |
-
)
|
| 2223 |
-
with gr.TabItem("Other"):
|
| 2224 |
-
with gr.Row():
|
| 2225 |
-
gr.Markdown("""
|
| 2226 |
-
**STS Other Leaderboard** 👽
|
| 2227 |
-
|
| 2228 |
-
- **Metric:** Spearman correlation based on cosine similarity
|
| 2229 |
-
- **Languages:** Arabic, Chinese, Dutch, English, French, German, Italian, Korean, Polish, Russian, Spanish (Only language combos not included in the other tabs)
|
| 2230 |
-
""")
|
| 2231 |
-
with gr.Row():
|
| 2232 |
-
data_sts_other = gr.components.Dataframe(
|
| 2233 |
-
DATA_STS_OTHER,
|
| 2234 |
-
datatype=["number", "markdown"] + ["number"] * len(DATA_STS_OTHER.columns) * 2,
|
| 2235 |
-
type="pandas",
|
| 2236 |
-
)
|
| 2237 |
-
with gr.Row():
|
| 2238 |
-
data_run_sts_other = gr.Button("Refresh")
|
| 2239 |
-
data_run_sts_other.click(
|
| 2240 |
-
partial(get_mteb_data, tasks=["STS"], datasets=TASK_LIST_STS_OTHER),
|
| 2241 |
-
outputs=data_sts_other,
|
| 2242 |
-
)
|
| 2243 |
-
with gr.TabItem("Summarization"):
|
| 2244 |
-
with gr.TabItem("English"):
|
| 2245 |
-
with gr.Row():
|
| 2246 |
-
gr.Markdown("""
|
| 2247 |
-
**Summarization Leaderboard** 📜
|
| 2248 |
-
|
| 2249 |
-
- **Metric:** Spearman correlation based on cosine similarity
|
| 2250 |
-
- **Languages:** English
|
| 2251 |
-
""")
|
| 2252 |
-
with gr.Row():
|
| 2253 |
-
data_summarization = gr.components.Dataframe(
|
| 2254 |
-
DATA_SUMMARIZATION,
|
| 2255 |
-
datatype=["number", "markdown"] + ["number"] * 2,
|
| 2256 |
-
type="pandas",
|
| 2257 |
-
)
|
| 2258 |
-
with gr.Row():
|
| 2259 |
-
data_run = gr.Button("Refresh")
|
| 2260 |
-
data_run.click(
|
| 2261 |
-
partial(get_mteb_data, tasks=TASK_LIST_SUMMARIZATION),
|
| 2262 |
-
outputs=data_summarization,
|
| 2263 |
-
)
|
| 2264 |
-
with gr.TabItem("French"):
|
| 2265 |
-
with gr.Row():
|
| 2266 |
-
gr.Markdown("""
|
| 2267 |
-
**Summarization Leaderboard** 📜
|
| 2268 |
-
|
| 2269 |
-
- **Metric:** Spearman correlation based on cosine similarity
|
| 2270 |
-
- **Languages:** French
|
| 2271 |
-
- **Credits:** [Lyon-NLP](https://github.com/Lyon-NLP): [Gabriel Sequeira](https://github.com/GabrielSequeira), [Imene Kerboua](https://github.com/imenelydiaker), [wissam-sib](https://github.com/wissam-sib), [Mathieu Ciancone](https://github.com/MathieuCiancone), [Marion Schaeffer](https://github.com/schmarion)
|
| 2272 |
-
""")
|
| 2273 |
-
with gr.Row():
|
| 2274 |
-
data_summarization_fr = gr.components.Dataframe(
|
| 2275 |
-
DATA_SUMMARIZATION_FR,
|
| 2276 |
-
datatype=["number", "markdown"] + ["number"] * 2,
|
| 2277 |
-
type="pandas",
|
| 2278 |
-
)
|
| 2279 |
-
with gr.Row():
|
| 2280 |
-
data_run_summarization_fr = gr.Button("Refresh")
|
| 2281 |
-
data_run_summarization_fr.click(
|
| 2282 |
-
partial(get_mteb_data, tasks=TASK_LIST_SUMMARIZATION_FR),
|
| 2283 |
-
outputs=data_run_summarization_fr,
|
| 2284 |
-
)
|
| 2285 |
gr.Markdown(f"""
|
| 2286 |
- **Total Datasets**: {NUM_DATASETS}
|
| 2287 |
- **Total Languages**: 113
|
|
@@ -2302,16 +1865,10 @@ with block:
|
|
| 2302 |
}
|
| 2303 |
```
|
| 2304 |
""")
|
| 2305 |
-
# Running the functions on page load in addition to when the button is clicked
|
| 2306 |
-
# This is optional - If deactivated the data loaded at "Build time" is shown like for Overall tab
|
| 2307 |
-
"""
|
| 2308 |
-
block.load(get_mteb_data, inputs=[task_bitext_mining], outputs=data_bitext_mining)
|
| 2309 |
-
"""
|
| 2310 |
|
| 2311 |
block.queue(max_size=10)
|
| 2312 |
block.launch()
|
| 2313 |
|
| 2314 |
-
|
| 2315 |
# Possible changes:
|
| 2316 |
# Could add graphs / other visual content
|
| 2317 |
# Could add verification marks
|
|
|
|
| 23 |
]
|
| 24 |
|
| 25 |
TASK_LIST_BITEXT_MINING = ['BUCC (de-en)', 'BUCC (fr-en)', 'BUCC (ru-en)', 'BUCC (zh-en)', 'Tatoeba (afr-eng)', 'Tatoeba (amh-eng)', 'Tatoeba (ang-eng)', 'Tatoeba (ara-eng)', 'Tatoeba (arq-eng)', 'Tatoeba (arz-eng)', 'Tatoeba (ast-eng)', 'Tatoeba (awa-eng)', 'Tatoeba (aze-eng)', 'Tatoeba (bel-eng)', 'Tatoeba (ben-eng)', 'Tatoeba (ber-eng)', 'Tatoeba (bos-eng)', 'Tatoeba (bre-eng)', 'Tatoeba (bul-eng)', 'Tatoeba (cat-eng)', 'Tatoeba (cbk-eng)', 'Tatoeba (ceb-eng)', 'Tatoeba (ces-eng)', 'Tatoeba (cha-eng)', 'Tatoeba (cmn-eng)', 'Tatoeba (cor-eng)', 'Tatoeba (csb-eng)', 'Tatoeba (cym-eng)', 'Tatoeba (dan-eng)', 'Tatoeba (deu-eng)', 'Tatoeba (dsb-eng)', 'Tatoeba (dtp-eng)', 'Tatoeba (ell-eng)', 'Tatoeba (epo-eng)', 'Tatoeba (est-eng)', 'Tatoeba (eus-eng)', 'Tatoeba (fao-eng)', 'Tatoeba (fin-eng)', 'Tatoeba (fra-eng)', 'Tatoeba (fry-eng)', 'Tatoeba (gla-eng)', 'Tatoeba (gle-eng)', 'Tatoeba (glg-eng)', 'Tatoeba (gsw-eng)', 'Tatoeba (heb-eng)', 'Tatoeba (hin-eng)', 'Tatoeba (hrv-eng)', 'Tatoeba (hsb-eng)', 'Tatoeba (hun-eng)', 'Tatoeba (hye-eng)', 'Tatoeba (ido-eng)', 'Tatoeba (ile-eng)', 'Tatoeba (ina-eng)', 'Tatoeba (ind-eng)', 'Tatoeba (isl-eng)', 'Tatoeba (ita-eng)', 'Tatoeba (jav-eng)', 'Tatoeba (jpn-eng)', 'Tatoeba (kab-eng)', 'Tatoeba (kat-eng)', 'Tatoeba (kaz-eng)', 'Tatoeba (khm-eng)', 'Tatoeba (kor-eng)', 'Tatoeba (kur-eng)', 'Tatoeba (kzj-eng)', 'Tatoeba (lat-eng)', 'Tatoeba (lfn-eng)', 'Tatoeba (lit-eng)', 'Tatoeba (lvs-eng)', 'Tatoeba (mal-eng)', 'Tatoeba (mar-eng)', 'Tatoeba (max-eng)', 'Tatoeba (mhr-eng)', 'Tatoeba (mkd-eng)', 'Tatoeba (mon-eng)', 'Tatoeba (nds-eng)', 'Tatoeba (nld-eng)', 'Tatoeba (nno-eng)', 'Tatoeba (nob-eng)', 'Tatoeba (nov-eng)', 'Tatoeba (oci-eng)', 'Tatoeba (orv-eng)', 'Tatoeba (pam-eng)', 'Tatoeba (pes-eng)', 'Tatoeba (pms-eng)', 'Tatoeba (pol-eng)', 'Tatoeba (por-eng)', 'Tatoeba (ron-eng)', 'Tatoeba (rus-eng)', 'Tatoeba (slk-eng)', 'Tatoeba (slv-eng)', 'Tatoeba (spa-eng)', 'Tatoeba (sqi-eng)', 'Tatoeba (srp-eng)', 'Tatoeba (swe-eng)', 'Tatoeba (swg-eng)', 'Tatoeba (swh-eng)', 'Tatoeba (tam-eng)', 'Tatoeba (tat-eng)', 'Tatoeba (tel-eng)', 'Tatoeba (tgl-eng)', 'Tatoeba (tha-eng)', 'Tatoeba (tuk-eng)', 'Tatoeba (tur-eng)', 'Tatoeba (tzl-eng)', 'Tatoeba (uig-eng)', 'Tatoeba (ukr-eng)', 'Tatoeba (urd-eng)', 'Tatoeba (uzb-eng)', 'Tatoeba (vie-eng)', 'Tatoeba (war-eng)', 'Tatoeba (wuu-eng)', 'Tatoeba (xho-eng)', 'Tatoeba (yid-eng)', 'Tatoeba (yue-eng)', 'Tatoeba (zsm-eng)']
|
| 26 |
+
TASK_LIST_BITEXT_MINING_DA = ["BornholmBitextMining"]
|
| 27 |
|
| 28 |
TASK_LIST_CLASSIFICATION = [
|
| 29 |
"AmazonCounterfactualClassification (en)",
|
|
|
|
| 1027 |
examples["mteb_task"] = "STS"
|
| 1028 |
elif examples["mteb_dataset_name"] in norm(TASK_LIST_SUMMARIZATION + TASK_LIST_SUMMARIZATION_FR):
|
| 1029 |
examples["mteb_task"] = "Summarization"
|
| 1030 |
+
elif examples["mteb_dataset_name"] in norm(TASK_LIST_BITEXT_MINING + TASK_LIST_BITEXT_MINING_DA):
|
| 1031 |
examples["mteb_task"] = "BitextMining"
|
| 1032 |
else:
|
| 1033 |
print("WARNING: Task not found for dataset", examples["mteb_dataset_name"])
|
|
|
|
| 1427 |
get_mteb_average_pl()
|
| 1428 |
get_mteb_average_zh()
|
| 1429 |
DATA_BITEXT_MINING = get_mteb_data(["BitextMining"], [], TASK_LIST_BITEXT_MINING)
|
| 1430 |
+
DATA_BITEXT_MINING_DA = get_mteb_data(["BitextMining"], [], TASK_LIST_BITEXT_MINING_DA)
|
| 1431 |
DATA_CLASSIFICATION_DA = get_mteb_data(["Classification"], [], TASK_LIST_CLASSIFICATION_DA)
|
| 1432 |
DATA_CLASSIFICATION_NB = get_mteb_data(["Classification"], [], TASK_LIST_CLASSIFICATION_NB)
|
| 1433 |
DATA_CLASSIFICATION_SV = get_mteb_data(["Classification"], [], TASK_LIST_CLASSIFICATION_SV)
|
|
|
|
| 1442 |
# LANGUAGES = []
|
| 1443 |
for d in [
|
| 1444 |
DATA_BITEXT_MINING,
|
| 1445 |
+
DATA_BITEXT_MINING_DA,
|
| 1446 |
DATA_CLASSIFICATION_EN,
|
| 1447 |
DATA_CLASSIFICATION_DA,
|
| 1448 |
DATA_CLASSIFICATION_FR,
|
|
|
|
| 1505 |
}
|
| 1506 |
"""
|
| 1507 |
|
| 1508 |
+
"""
|
| 1509 |
+
Each inner tab can have the following keys:
|
| 1510 |
+
- language: The language of the leaderboard
|
| 1511 |
+
- language_long: [optional] The long form of the language
|
| 1512 |
+
- description: The description of the leaderboard
|
| 1513 |
+
- credits: [optional] The credits for the leaderboard
|
| 1514 |
+
- data: The data for the leaderboard
|
| 1515 |
+
- refresh: The function to refresh the leaderboard
|
| 1516 |
+
"""
|
| 1517 |
+
|
| 1518 |
+
chinese_credits = "[FlagEmbedding](https://github.com/FlagOpen/FlagEmbedding)"
|
| 1519 |
+
french_credits = "[Lyon-NLP](https://github.com/Lyon-NLP): [Gabriel Sequeira](https://github.com/GabrielSequeira), [Imene Kerboua](https://github.com/imenelydiaker), [Wissam Siblini](https://github.com/wissam-sib), [Mathieu Ciancone](https://github.com/MathieuCiancone), [Marion Schaeffer](https://github.com/schmarion)"
|
| 1520 |
+
danish_credits = "[Kenneth Enevoldsen](https://github.com/KennethEnevoldsen), [scandinavian-embedding-benchmark](https://kennethenevoldsen.github.io/scandinavian-embedding-benchmark/)"
|
| 1521 |
+
norwegian_credits = "[Kenneth Enevoldsen](https://github.com/KennethEnevoldsen), [scandinavian-embedding-benchmark](https://kennethenevoldsen.github.io/scandinavian-embedding-benchmark/)"
|
| 1522 |
+
polish_credits = "[Rafał Poświata](https://github.com/rafalposwiata)"
|
| 1523 |
+
|
| 1524 |
+
data = {
|
| 1525 |
+
"Overall": {
|
| 1526 |
+
"metric": "Various, refer to task tabs",
|
| 1527 |
+
"data": [
|
| 1528 |
+
{
|
| 1529 |
+
"language": "English",
|
| 1530 |
+
"description": "**Overall MTEB English leaderboard** 🔮",
|
| 1531 |
+
"data": DATA_OVERALL,
|
| 1532 |
+
"refresh": get_mteb_average,
|
| 1533 |
+
},
|
| 1534 |
+
{
|
| 1535 |
+
"language": "Chinese",
|
| 1536 |
+
"data": DATA_OVERALL_ZH,
|
| 1537 |
+
"description": "**Overall MTEB Chinese leaderboard (C-MTEB)** 🔮🇨🇳",
|
| 1538 |
+
"credits": chinese_credits,
|
| 1539 |
+
"refresh": get_mteb_average_zh,
|
| 1540 |
+
},
|
| 1541 |
+
{
|
| 1542 |
+
"language": "French",
|
| 1543 |
+
"data": DATA_OVERALL_FR,
|
| 1544 |
+
"description": "**Overall MTEB French leaderboard (F-MTEB)** 🔮🇫🇷",
|
| 1545 |
+
"credits": french_credits,
|
| 1546 |
+
"refresh": get_mteb_average_fr,
|
| 1547 |
+
},
|
| 1548 |
+
{
|
| 1549 |
+
"language": "Polish",
|
| 1550 |
+
"data": DATA_OVERALL_PL,
|
| 1551 |
+
"description": "**Overall MTEB Polish leaderboard** 🔮🇵🇱",
|
| 1552 |
+
"refresh": get_mteb_average_pl,
|
| 1553 |
+
},
|
| 1554 |
+
]
|
| 1555 |
+
},
|
| 1556 |
+
"Bitext Mining": {
|
| 1557 |
+
"metric": "[F1](https://huggingface.co/spaces/evaluate-metric/f1)",
|
| 1558 |
+
"data": [
|
| 1559 |
+
{
|
| 1560 |
+
"language": "English-X",
|
| 1561 |
+
"language_long": "117 (Pairs of: English & other language)",
|
| 1562 |
+
"description": "**Bitext Mining English-X Leaderboard** 🎌",
|
| 1563 |
+
"data": DATA_BITEXT_MINING,
|
| 1564 |
+
"refresh": partial(get_mteb_data, tasks=["BitextMining"], datasets=TASK_LIST_BITEXT_MINING),
|
| 1565 |
+
},
|
| 1566 |
+
{
|
| 1567 |
+
"language": "Danish",
|
| 1568 |
+
"language_long": "Danish & Bornholmsk (Danish Dialect)",
|
| 1569 |
+
"description": "**Bitext Mining Danish Leaderboard** 🎌🇩🇰",
|
| 1570 |
+
"credits": danish_credits,
|
| 1571 |
+
"data": DATA_BITEXT_MINING_DA,
|
| 1572 |
+
"refresh": partial(get_mteb_data, tasks=["BitextMining"], datasets=TASK_LIST_BITEXT_MINING_DA),
|
| 1573 |
+
}
|
| 1574 |
+
]
|
| 1575 |
+
},
|
| 1576 |
+
"Classification": {
|
| 1577 |
+
"metric": "[Accuracy](https://huggingface.co/spaces/evaluate-metric/accuracy)",
|
| 1578 |
+
"data": [
|
| 1579 |
+
{
|
| 1580 |
+
"language": "English",
|
| 1581 |
+
"description": "**Classification English Leaderboard** ❤️",
|
| 1582 |
+
"data": DATA_CLASSIFICATION_EN,
|
| 1583 |
+
"refresh": partial(get_mteb_data, tasks=["Classification"], langs=["en"])
|
| 1584 |
+
},
|
| 1585 |
+
{
|
| 1586 |
+
"language": "Chinese",
|
| 1587 |
+
"description": "**Classification Chinese Leaderboard** 🧡🇨🇳",
|
| 1588 |
+
"credits": chinese_credits,
|
| 1589 |
+
"data": DATA_CLASSIFICATION_ZH,
|
| 1590 |
+
"refresh": partial(get_mteb_data, tasks=["Classification"], datasets=TASK_LIST_CLASSIFICATION_ZH)
|
| 1591 |
+
},
|
| 1592 |
+
{
|
| 1593 |
+
"language": "Danish",
|
| 1594 |
+
"description": "**Classification Danish Leaderboard** 🤍🇩🇰",
|
| 1595 |
+
"credits": danish_credits,
|
| 1596 |
+
"data": DATA_CLASSIFICATION_DA,
|
| 1597 |
+
"refresh": partial(get_mteb_data, tasks=["Classification"], datasets=TASK_LIST_CLASSIFICATION_DA)
|
| 1598 |
+
},
|
| 1599 |
+
{
|
| 1600 |
+
"language": "French",
|
| 1601 |
+
"description": "**Classification French Leaderboard** 💙🇫🇷",
|
| 1602 |
+
"credits": french_credits,
|
| 1603 |
+
"data": DATA_CLASSIFICATION_FR,
|
| 1604 |
+
"refresh": partial(get_mteb_data, tasks=["Classification"], datasets=TASK_LIST_CLASSIFICATION_FR)
|
| 1605 |
+
},
|
| 1606 |
+
{
|
| 1607 |
+
"language": "Norwegian",
|
| 1608 |
+
"language_long": "Norwegian Bokmål",
|
| 1609 |
+
"description": "**Classification Norwegian Leaderboard** 💙🇳🇴",
|
| 1610 |
+
"credits": norwegian_credits,
|
| 1611 |
+
"data": DATA_CLASSIFICATION_NB,
|
| 1612 |
+
"refresh": partial(get_mteb_data, tasks=["Classification"], datasets=TASK_LIST_CLASSIFICATION_NB)
|
| 1613 |
+
},
|
| 1614 |
+
{
|
| 1615 |
+
"language": "Polish",
|
| 1616 |
+
"description": "**Classification Polish Leaderboard** 🤍🇵🇱",
|
| 1617 |
+
"credits": polish_credits,
|
| 1618 |
+
"data": DATA_CLASSIFICATION_PL,
|
| 1619 |
+
"refresh": partial(get_mteb_data, tasks=["Classification"], datasets=TASK_LIST_CLASSIFICATION_PL)
|
| 1620 |
+
},
|
| 1621 |
+
{
|
| 1622 |
+
"language": "Swedish",
|
| 1623 |
+
"description": "**Classification Swedish Leaderboard** 💛🇸🇪",
|
| 1624 |
+
"credits": norwegian_credits,
|
| 1625 |
+
"data": DATA_CLASSIFICATION_SV,
|
| 1626 |
+
"refresh": partial(get_mteb_data, tasks=["Classification"], datasets=TASK_LIST_CLASSIFICATION_SV)
|
| 1627 |
+
},
|
| 1628 |
+
{
|
| 1629 |
+
"language": "Other",
|
| 1630 |
+
"language_long": "47 (Only languages not included in the other tabs)",
|
| 1631 |
+
"description": "**Classification Other Languages Leaderboard** 💜💚💙",
|
| 1632 |
+
"data": DATA_CLASSIFICATION_OTHER,
|
| 1633 |
+
"refresh": partial(get_mteb_data, tasks=["Classification"], datasets=TASK_LIST_CLASSIFICATION_OTHER)
|
| 1634 |
+
}
|
| 1635 |
+
]
|
| 1636 |
+
},
|
| 1637 |
+
"Clustering": {
|
| 1638 |
+
"metric": "Validity Measure (v_measure)",
|
| 1639 |
+
"data": [
|
| 1640 |
+
{
|
| 1641 |
+
"language": "English",
|
| 1642 |
+
"description": "**Clustering Leaderboard** ✨",
|
| 1643 |
+
"data": DATA_CLUSTERING,
|
| 1644 |
+
"refresh": partial(get_mteb_data, tasks=["Clustering"], datasets=TASK_LIST_CLUSTERING)
|
| 1645 |
+
},
|
| 1646 |
+
{
|
| 1647 |
+
"language": "Chinese",
|
| 1648 |
+
"description": "**Clustering Chinese Leaderboard** ✨🇨🇳",
|
| 1649 |
+
"credits": chinese_credits,
|
| 1650 |
+
"data": DATA_CLUSTERING_ZH,
|
| 1651 |
+
"refresh": partial(get_mteb_data, tasks=["Clustering"], datasets=TASK_LIST_CLUSTERING_ZH)
|
| 1652 |
+
},
|
| 1653 |
+
{
|
| 1654 |
+
"language": "French",
|
| 1655 |
+
"description": "**Clustering French Leaderboard** ✨🇫🇷",
|
| 1656 |
+
"credits": french_credits,
|
| 1657 |
+
"data": DATA_CLUSTERING_FR,
|
| 1658 |
+
"refresh": partial(get_mteb_data, tasks=["Clustering"], datasets=TASK_LIST_CLUSTERING_FR)
|
| 1659 |
+
},
|
| 1660 |
+
{
|
| 1661 |
+
"language": "German",
|
| 1662 |
+
"description": "**Clustering German Leaderboard** ✨🇩🇪",
|
| 1663 |
+
"credits": "[Silvan](https://github.com/slvnwhrl)",
|
| 1664 |
+
"data": DATA_CLUSTERING_DE,
|
| 1665 |
+
"refresh": partial(get_mteb_data, tasks=["Clustering"], datasets=TASK_LIST_CLUSTERING_DE)
|
| 1666 |
+
},
|
| 1667 |
+
{
|
| 1668 |
+
"language": "Polish",
|
| 1669 |
+
"description": "**Clustering Polish Leaderboard** ✨🇵🇱",
|
| 1670 |
+
"credits": polish_credits,
|
| 1671 |
+
"data": DATA_CLUSTERING_PL,
|
| 1672 |
+
"refresh": partial(get_mteb_data, tasks=["Clustering"], datasets=TASK_LIST_CLUSTERING_PL)
|
| 1673 |
+
},
|
| 1674 |
+
]
|
| 1675 |
+
},
|
| 1676 |
+
"Pair Classification": {
|
| 1677 |
+
"metric": "Average Precision based on Cosine Similarities (cos_sim_ap)",
|
| 1678 |
+
"data": [
|
| 1679 |
+
{
|
| 1680 |
+
"language": "English",
|
| 1681 |
+
"description": "**Pair Classification English Leaderboard** 🎭",
|
| 1682 |
+
"data": DATA_PAIR_CLASSIFICATION,
|
| 1683 |
+
"refresh": partial(get_mteb_data, tasks=["PairClassification"], datasets=TASK_LIST_PAIR_CLASSIFICATION)
|
| 1684 |
+
},
|
| 1685 |
+
{
|
| 1686 |
+
"language": "Chinese",
|
| 1687 |
+
"description": "**Pair Classification Chinese Leaderboard** 🎭🇨🇳",
|
| 1688 |
+
"credits": chinese_credits,
|
| 1689 |
+
"data": DATA_PAIR_CLASSIFICATION_ZH,
|
| 1690 |
+
"refresh": partial(get_mteb_data, tasks=["PairClassification"], datasets=TASK_LIST_PAIR_CLASSIFICATION_ZH)
|
| 1691 |
+
},
|
| 1692 |
+
{
|
| 1693 |
+
"language": "French",
|
| 1694 |
+
"description": "**Pair Classification French Leaderboard** 🎭🇫🇷",
|
| 1695 |
+
"credits": french_credits,
|
| 1696 |
+
"data": DATA_PAIR_CLASSIFICATION_FR,
|
| 1697 |
+
"refresh": partial(get_mteb_data, tasks=["PairClassification"], datasets=TASK_LIST_PAIR_CLASSIFICATION_FR)
|
| 1698 |
+
},
|
| 1699 |
+
{
|
| 1700 |
+
"language": "Polish",
|
| 1701 |
+
"description": "**Pair Classification Polish Leaderboard** 🎭🇵🇱",
|
| 1702 |
+
"credits": polish_credits,
|
| 1703 |
+
"data": DATA_PAIR_CLASSIFICATION_PL,
|
| 1704 |
+
"refresh": partial(get_mteb_data, tasks=["PairClassification"], datasets=TASK_LIST_PAIR_CLASSIFICATION_PL)
|
| 1705 |
+
},
|
| 1706 |
+
]
|
| 1707 |
+
},
|
| 1708 |
+
"Reranking": {
|
| 1709 |
+
"metric": "Mean Average Precision (MAP)",
|
| 1710 |
+
"data": [
|
| 1711 |
+
{
|
| 1712 |
+
"language": "English",
|
| 1713 |
+
"description": "**Reranking English Leaderboard** 🥈",
|
| 1714 |
+
"data": DATA_RERANKING,
|
| 1715 |
+
"refresh": partial(get_mteb_data, tasks=["Reranking"], datasets=TASK_LIST_RERANKING)
|
| 1716 |
+
},
|
| 1717 |
+
{
|
| 1718 |
+
"language": "Chinese",
|
| 1719 |
+
"description": "**Reranking Chinese Leaderboard** 🥈🇨🇳",
|
| 1720 |
+
"credits": chinese_credits,
|
| 1721 |
+
"data": DATA_RERANKING_ZH,
|
| 1722 |
+
"refresh": partial(get_mteb_data, tasks=["Reranking"], datasets=TASK_LIST_RERANKING_ZH)
|
| 1723 |
+
},
|
| 1724 |
+
{
|
| 1725 |
+
"language": "French",
|
| 1726 |
+
"description": "**Reranking French Leaderboard** 🥈🇫🇷",
|
| 1727 |
+
"credits": french_credits,
|
| 1728 |
+
"data": DATA_RERANKING_FR,
|
| 1729 |
+
"refresh": partial(get_mteb_data, tasks=["Reranking"], datasets=TASK_LIST_RERANKING_FR)
|
| 1730 |
+
}
|
| 1731 |
+
]
|
| 1732 |
+
},
|
| 1733 |
+
"Retrieval": {
|
| 1734 |
+
"metric": "Normalized Discounted Cumulative Gain @ k (ndcg_at_10)",
|
| 1735 |
+
"data": [
|
| 1736 |
+
{
|
| 1737 |
+
"language": "English",
|
| 1738 |
+
"description": "**Retrieval English Leaderboard** 🔎",
|
| 1739 |
+
"data": DATA_RETRIEVAL,
|
| 1740 |
+
"refresh": partial(get_mteb_data, tasks=["Retrieval"], datasets=TASK_LIST_RETRIEVAL)
|
| 1741 |
+
},
|
| 1742 |
+
{
|
| 1743 |
+
"language": "Chinese",
|
| 1744 |
+
"description": "**Retrieval Chinese Leaderboard** 🔎🇨🇳",
|
| 1745 |
+
"credits": chinese_credits,
|
| 1746 |
+
"data": DATA_RETRIEVAL_ZH,
|
| 1747 |
+
"refresh": partial(get_mteb_data, tasks=["Retrieval"], datasets=TASK_LIST_RETRIEVAL_ZH)
|
| 1748 |
+
},
|
| 1749 |
+
{
|
| 1750 |
+
"language": "French",
|
| 1751 |
+
"description": "**Retrieval French Leaderboard** 🔎🇫🇷",
|
| 1752 |
+
"credits": french_credits,
|
| 1753 |
+
"data": DATA_RETRIEVAL_FR,
|
| 1754 |
+
"refresh": partial(get_mteb_data, tasks=["Retrieval"], datasets=TASK_LIST_RETRIEVAL_FR)
|
| 1755 |
+
},
|
| 1756 |
+
{
|
| 1757 |
+
"language": "Polish",
|
| 1758 |
+
"description": "**Retrieval Polish Leaderboard** 🔎🇵🇱",
|
| 1759 |
+
"credits": polish_credits,
|
| 1760 |
+
"data": DATA_RETRIEVAL_PL,
|
| 1761 |
+
"refresh": partial(get_mteb_data, tasks=["Retrieval"], datasets=TASK_LIST_RETRIEVAL_PL)
|
| 1762 |
+
}
|
| 1763 |
+
]
|
| 1764 |
+
},
|
| 1765 |
+
"STS": {
|
| 1766 |
+
"metric": "Spearman correlation based on cosine similarity",
|
| 1767 |
+
"data": [
|
| 1768 |
+
{
|
| 1769 |
+
"language": "English",
|
| 1770 |
+
"description": "**STS English Leaderboard** 🤖",
|
| 1771 |
+
"data": DATA_STS_EN,
|
| 1772 |
+
"refresh": partial(get_mteb_data, tasks=["STS"], datasets=TASK_LIST_STS)
|
| 1773 |
+
},
|
| 1774 |
+
{
|
| 1775 |
+
"language": "Chinese",
|
| 1776 |
+
"description": "**STS Chinese Leaderboard** 🤖🇨🇳",
|
| 1777 |
+
"credits": chinese_credits,
|
| 1778 |
+
"data": DATA_STS_ZH,
|
| 1779 |
+
"refresh": partial(get_mteb_data, tasks=["STS"], datasets=TASK_LIST_STS_ZH)
|
| 1780 |
+
},
|
| 1781 |
+
{
|
| 1782 |
+
"language": "French",
|
| 1783 |
+
"description": "**STS French Leaderboard** 🤖🇫🇷",
|
| 1784 |
+
"credits": french_credits,
|
| 1785 |
+
"data": DATA_STS_FR,
|
| 1786 |
+
"refresh": partial(get_mteb_data, tasks=["STS"], datasets=TASK_LIST_STS_FR)
|
| 1787 |
+
},
|
| 1788 |
+
{
|
| 1789 |
+
"language": "Polish",
|
| 1790 |
+
"description": "**STS Polish Leaderboard** 🤖🇵🇱",
|
| 1791 |
+
"credits": polish_credits,
|
| 1792 |
+
"data": DATA_STS_PL,
|
| 1793 |
+
"refresh": partial(get_mteb_data, tasks=["STS"], datasets=TASK_LIST_STS_PL)
|
| 1794 |
+
},
|
| 1795 |
+
{
|
| 1796 |
+
"language": "Other",
|
| 1797 |
+
"language_long": "Arabic, Chinese, Dutch, English, French, German, Italian, Korean, Polish, Russian, Spanish (Only language combos not included in the other tabs)",
|
| 1798 |
+
"description": "**STS Other Leaderboard** 👽",
|
| 1799 |
+
"data": DATA_STS_OTHER,
|
| 1800 |
+
"refresh": partial(get_mteb_data, tasks=["STS"], datasets=TASK_LIST_STS_OTHER)
|
| 1801 |
+
},
|
| 1802 |
+
]
|
| 1803 |
+
},
|
| 1804 |
+
"Summarization": {
|
| 1805 |
+
"metric": "Spearman correlation based on cosine similarity",
|
| 1806 |
+
"data": [
|
| 1807 |
+
{
|
| 1808 |
+
"language": "English",
|
| 1809 |
+
"description": "**Summarization Leaderboard** 📜",
|
| 1810 |
+
"data": DATA_SUMMARIZATION,
|
| 1811 |
+
"refresh": partial(get_mteb_data, tasks=TASK_LIST_SUMMARIZATION)
|
| 1812 |
+
},
|
| 1813 |
+
{
|
| 1814 |
+
"language": "French",
|
| 1815 |
+
"description": "**Summarization Leaderboard** 📜",
|
| 1816 |
+
"credits": french_credits,
|
| 1817 |
+
"data": DATA_SUMMARIZATION_FR,
|
| 1818 |
+
"refresh": partial(get_mteb_data, tasks=TASK_LIST_SUMMARIZATION_FR)
|
| 1819 |
+
}
|
| 1820 |
+
]
|
| 1821 |
+
}
|
| 1822 |
+
}
|
| 1823 |
+
dataframes = []
|
| 1824 |
+
|
| 1825 |
+
with gr.Blocks(css=css) as block:
|
| 1826 |
with gr.Tabs():
|
| 1827 |
+
for task, task_values in data.items():
|
| 1828 |
+
metric = task_values["metric"]
|
| 1829 |
+
with gr.Tab(task):
|
| 1830 |
+
for item in task_values["data"]:
|
| 1831 |
+
with gr.Tab(item["language"]):
|
| 1832 |
+
with gr.Row():
|
| 1833 |
+
gr.Markdown(f"""
|
| 1834 |
+
{item['description']}
|
| 1835 |
+
|
| 1836 |
+
- **Metric:** {metric}
|
| 1837 |
+
- **Languages:** {item['language_long'] if 'language_long' in item else item['language']}
|
| 1838 |
+
{"- **Credits:** " + item['credits'] if "credits" in item else ''}
|
| 1839 |
+
""")
|
| 1840 |
+
with gr.Row():
|
| 1841 |
+
datatype = ["number", "markdown"] + ["number"] * len(item["data"])
|
| 1842 |
+
dataframe = gr.Dataframe(item["data"], datatype=datatype, type="pandas", height=600)
|
| 1843 |
+
dataframes.append(dataframe)
|
| 1844 |
+
with gr.Row():
|
| 1845 |
+
refresh_button = gr.Button("Refresh")
|
| 1846 |
+
refresh_button.click(item["refresh"], inputs=None, outputs=dataframe)
|
| 1847 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1848 |
gr.Markdown(f"""
|
| 1849 |
- **Total Datasets**: {NUM_DATASETS}
|
| 1850 |
- **Total Languages**: 113
|
|
|
|
| 1865 |
}
|
| 1866 |
```
|
| 1867 |
""")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1868 |
|
| 1869 |
block.queue(max_size=10)
|
| 1870 |
block.launch()
|
| 1871 |
|
|
|
|
| 1872 |
# Possible changes:
|
| 1873 |
# Could add graphs / other visual content
|
| 1874 |
# Could add verification marks
|