Spaces:
Sleeping
Sleeping
| from huggingface_hub import InferenceClient | |
| from auditqa.process_chunks import getconfig | |
| from langchain.callbacks.streaming_stdout import StreamingStdOutCallbackHandler | |
| from langchain_community.llms import HuggingFaceEndpoint | |
| from langchain_community.chat_models.huggingface import ChatHuggingFace | |
| import os | |
| from dotenv import load_dotenv | |
| load_dotenv() | |
| model_config = getconfig("model_params.cfg") | |
| # NVIDIA_SERVER = os.environ["NVIDIA_SERVERLESS"] #TESTING | |
| HF_token = os.environ["LLAMA_3_1"] | |
| def nvidia_client(): | |
| """ returns the nvidia server client """ | |
| client = InferenceClient( | |
| base_url=model_config.get('reader','NVIDIA_ENDPOINT'), | |
| api_key=NVIDIA_SERVER) | |
| print("getting nvidia client") | |
| return client | |
| # TESTING VERSION | |
| def dedicated_endpoint(): | |
| try: | |
| HF_token = os.environ["LLAMA_3_1"] | |
| if not HF_token: | |
| raise ValueError("LLAMA_3_1 environment variable is empty") | |
| model_id = "meta-llama/Meta-Llama-3-8B-Instruct" | |
| client = InferenceClient( | |
| model=model_id, | |
| api_key=HF_token, | |
| ) | |
| return client | |
| except Exception as e: | |
| raise | |
| # def dedicated_endpoint(): | |
| # """ returns the dedicated server endpoint""" | |
| # # Set up the streaming callback handler | |
| # callback = StreamingStdOutCallbackHandler() | |
| # # Initialize the HuggingFaceEndpoint with streaming enabled | |
| # llm_qa = HuggingFaceEndpoint( | |
| # endpoint_url=model_config.get('reader', 'DEDICATED_ENDPOINT'), | |
| # max_new_tokens=int(model_config.get('reader','MAX_TOKENS')), | |
| # repetition_penalty=1.03, | |
| # timeout=70, | |
| # huggingfacehub_api_token=HF_token, | |
| # streaming=True, # Enable streaming for real-time token generation | |
| # callbacks=[callback] # Add the streaming callback handler | |
| # ) | |
| # # Create a ChatHuggingFace instance with the streaming-enabled endpoint | |
| # chat_model = ChatHuggingFace(llm=llm_qa) | |
| # print("getting dedicated endpoint wrapped in ChathuggingFace ") | |
| # return chat_model |