Spaces:
Sleeping
Sleeping
Initial commit of ML Model Hub
Browse files- Dockerfile +20 -0
- README.md +0 -10
- app.py +104 -0
- favicon.ico +0 -0
- index.html +55 -0
- requirements.txt +13 -0
- static/script.js +90 -0
- static/style.css +194 -0
Dockerfile
ADDED
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Use an official Python runtime as a parent image
|
2 |
+
FROM python:3.11-slim
|
3 |
+
|
4 |
+
# Set the working directory in the container
|
5 |
+
WORKDIR /code
|
6 |
+
|
7 |
+
# Copy the dependencies file to the working directory
|
8 |
+
COPY ./requirements.txt /code/requirements.txt
|
9 |
+
|
10 |
+
# Install any needed packages specified in requirements.txt
|
11 |
+
RUN pip install --no-cache-dir --upgrade -r /code/requirements.txt
|
12 |
+
|
13 |
+
# Copy the rest of the application's code to the working directory
|
14 |
+
COPY . /code/
|
15 |
+
|
16 |
+
# Expose the port the app runs on
|
17 |
+
EXPOSE 7860
|
18 |
+
|
19 |
+
# Define the command to run the application
|
20 |
+
CMD ["uvicorn", "app:app", "--host", "0.0.0.0", "--port", "7860"]
|
README.md
DELETED
@@ -1,10 +0,0 @@
|
|
1 |
-
---
|
2 |
-
title: Ml Model Hub
|
3 |
-
emoji: 🌍
|
4 |
-
colorFrom: indigo
|
5 |
-
colorTo: yellow
|
6 |
-
sdk: docker
|
7 |
-
pinned: false
|
8 |
-
---
|
9 |
-
|
10 |
-
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
app.py
ADDED
@@ -0,0 +1,104 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
|
3 |
+
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'
|
4 |
+
|
5 |
+
import logging
|
6 |
+
import io
|
7 |
+
from pathlib import Path
|
8 |
+
from fastapi import FastAPI, File, UploadFile, HTTPException
|
9 |
+
from fastapi.staticfiles import StaticFiles
|
10 |
+
from fastapi.responses import FileResponse
|
11 |
+
from pydantic import BaseModel
|
12 |
+
from PIL import Image
|
13 |
+
import torch
|
14 |
+
import torch.nn.functional as F
|
15 |
+
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
16 |
+
import tensorflow as tf
|
17 |
+
import numpy as np
|
18 |
+
from huggingface_hub import hf_hub_download
|
19 |
+
|
20 |
+
# --- Configuration ---
|
21 |
+
logging.basicConfig(level=logging.INFO)
|
22 |
+
STATIC_DIR = Path("static")
|
23 |
+
|
24 |
+
# --- Device Configuration ---
|
25 |
+
device = torch.device('cpu')
|
26 |
+
try:
|
27 |
+
tf.config.set_visible_devices([], 'GPU')
|
28 |
+
logging.info("TensorFlow GPU disabled. Using CPU.")
|
29 |
+
except (RuntimeError, ValueError) as e:
|
30 |
+
logging.warning(f"Could not disable GPU for TensorFlow: {e}")
|
31 |
+
|
32 |
+
# --- Model Loading ---
|
33 |
+
def load_models():
|
34 |
+
"""Load all models from Hugging Face Hub at startup."""
|
35 |
+
logging.info("Loading all models from the Hub...")
|
36 |
+
try:
|
37 |
+
tokenizer = AutoTokenizer.from_pretrained("muhalwan/sental")
|
38 |
+
sentiment_model = AutoModelForSequenceClassification.from_pretrained("muhalwan/sental")
|
39 |
+
sentiment_model.to(device)
|
40 |
+
logging.info("Sentiment analysis model loaded successfully.")
|
41 |
+
except Exception as e:
|
42 |
+
tokenizer, sentiment_model = None, None
|
43 |
+
logging.error(f"Error loading sentiment model: {e}")
|
44 |
+
|
45 |
+
try:
|
46 |
+
model_path = hf_hub_download(repo_id="muhalwan/catndog", filename="catdog_best.keras")
|
47 |
+
cat_dog_model = tf.keras.models.load_model(model_path, compile=False)
|
48 |
+
logging.info("Cat & Dog classifier model loaded successfully.")
|
49 |
+
except Exception as e:
|
50 |
+
cat_dog_model = None
|
51 |
+
logging.error(f"Error loading cat & dog model: {e}")
|
52 |
+
|
53 |
+
return tokenizer, sentiment_model, cat_dog_model
|
54 |
+
|
55 |
+
# --- FastAPI App Initialization ---
|
56 |
+
app = FastAPI()
|
57 |
+
tokenizer, sentiment_model, cat_dog_model = load_models()
|
58 |
+
app.mount("/static", StaticFiles(directory=STATIC_DIR), name="static")
|
59 |
+
|
60 |
+
class SentimentRequest(BaseModel):
|
61 |
+
text: str
|
62 |
+
|
63 |
+
# --- API Endpoints ---
|
64 |
+
@app.get("/")
|
65 |
+
async def read_root():
|
66 |
+
return FileResponse('index.html')
|
67 |
+
|
68 |
+
@app.post("/predict/sentiment")
|
69 |
+
async def predict_sentiment(request: SentimentRequest):
|
70 |
+
if not tokenizer or not sentiment_model:
|
71 |
+
raise HTTPException(status_code=503, detail="Sentiment model is not available.")
|
72 |
+
try:
|
73 |
+
inputs = tokenizer(request.text, return_tensors='pt', truncation=True, max_length=512)
|
74 |
+
inputs = {k: v.to(device) for k, v in inputs.items()}
|
75 |
+
with torch.no_grad():
|
76 |
+
outputs = sentiment_model(**inputs)
|
77 |
+
probabilities = F.softmax(outputs.logits, dim=-1).squeeze()
|
78 |
+
labels = ['Bearish', 'Bullish', 'Neutral']
|
79 |
+
prediction = labels[torch.argmax(probabilities).item()]
|
80 |
+
return {"prediction": prediction}
|
81 |
+
except Exception as e:
|
82 |
+
logging.error(f"Sentiment prediction error: {e}")
|
83 |
+
raise HTTPException(status_code=500, detail="An error occurred during sentiment analysis.")
|
84 |
+
|
85 |
+
@app.post("/predict/catdog")
|
86 |
+
async def predict_catdog(file: UploadFile = File(...)):
|
87 |
+
if not cat_dog_model:
|
88 |
+
raise HTTPException(status_code=503, detail="Cat & Dog model is not available.")
|
89 |
+
try:
|
90 |
+
contents = await file.read()
|
91 |
+
image = Image.open(io.BytesIO(contents))
|
92 |
+
_, height, width, _ = cat_dog_model.input_shape
|
93 |
+
img_resized = image.resize((width, height))
|
94 |
+
if img_resized.mode == 'RGBA':
|
95 |
+
img_resized = img_resized.convert('RGB')
|
96 |
+
img_array = tf.keras.utils.img_to_array(img_resized)
|
97 |
+
img_array = tf.keras.applications.efficientnet.preprocess_input(img_array)
|
98 |
+
img_array = np.expand_dims(img_array, axis=0)
|
99 |
+
prob = cat_dog_model.predict(img_array, verbose=0)[0, 0]
|
100 |
+
label = "Dog" if prob >= 0.5 else "Cat"
|
101 |
+
return {"prediction": label}
|
102 |
+
except Exception as e:
|
103 |
+
logging.error(f"Cat/Dog prediction error: {e}")
|
104 |
+
raise HTTPException(status_code=500, detail="An error occurred during image classification.")
|
favicon.ico
ADDED
|
index.html
ADDED
@@ -0,0 +1,55 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
<!DOCTYPE html>
|
2 |
+
<html lang="en">
|
3 |
+
<head>
|
4 |
+
<meta charset="UTF-8">
|
5 |
+
<meta name="viewport" content="width=device-width, initial-scale=1.0">
|
6 |
+
<title>ML Model Hub</title>
|
7 |
+
<link rel="stylesheet" href="/static/style.css">
|
8 |
+
<link rel="preconnect" href="https://fonts.googleapis.com">
|
9 |
+
<link rel="preconnect" href="https://fonts.gstatic.com" crossorigin>
|
10 |
+
<link href="https://fonts.googleapis.com/css2?family=Inter:wght@400;500;600;700&display=swap" rel="stylesheet">
|
11 |
+
</head>
|
12 |
+
<body>
|
13 |
+
<div class="container">
|
14 |
+
<header>
|
15 |
+
<h1>ML Model Hub</h1>
|
16 |
+
<p>Select a model to get started</p>
|
17 |
+
</header>
|
18 |
+
|
19 |
+
<div class="model-selector">
|
20 |
+
<button id="cat-dog-btn" class="model-btn">Cat & Dog Classifier</button>
|
21 |
+
<button id="sentiment-btn" class="model-btn active">Sentiment Analysis</button>
|
22 |
+
<button class="model-btn disabled" disabled>California House Price (soon)</button>
|
23 |
+
</div>
|
24 |
+
|
25 |
+
<main id="main-content">
|
26 |
+
<!-- Sentiment Analysis Interface -->
|
27 |
+
<div id="sentiment-interface" class="model-interface active">
|
28 |
+
<form id="sentiment-form">
|
29 |
+
<h2>Tweet Sentiment Analysis</h2>
|
30 |
+
<p>Enter a tweet to analyze its sentiment (Bullish, Bearish, or Neutral).</p>
|
31 |
+
<label for="tweet-text">Tweet Text</label>
|
32 |
+
<textarea id="tweet-text" placeholder="Enter tweet here..."></textarea>
|
33 |
+
<button type="submit" class="predict-btn">Predict</button>
|
34 |
+
</form>
|
35 |
+
<div id="sentiment-result" class="result-display"></div>
|
36 |
+
</div>
|
37 |
+
|
38 |
+
<!-- Cat & Dog Classifier Interface -->
|
39 |
+
<div id="cat-dog-interface" class="model-interface">
|
40 |
+
<form id="cat-dog-form">
|
41 |
+
<h2>Cat & Dog Classifier</h2>
|
42 |
+
<p>Upload an image to classify if it's a cat or a dog.</p>
|
43 |
+
<label for="image-upload" class="upload-label">Choose an image...</label>
|
44 |
+
<input type="file" id="image-upload" accept="image/jpeg, image/png">
|
45 |
+
<div id="image-preview"></div>
|
46 |
+
<button type="submit" class="predict-btn">Predict</button>
|
47 |
+
</form>
|
48 |
+
<div id="cat-dog-result" class="result-display"></div>
|
49 |
+
</div>
|
50 |
+
</main>
|
51 |
+
</div>
|
52 |
+
|
53 |
+
<script src="/static/script.js"></script>
|
54 |
+
</body>
|
55 |
+
</html>
|
requirements.txt
ADDED
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
--extra-index-url https://download.pytorch.org/whl/cpu
|
2 |
+
numpy==1.26.4
|
3 |
+
pandas==2.0.3
|
4 |
+
torch
|
5 |
+
transformers==4.50.0
|
6 |
+
sentencepiece
|
7 |
+
huggingface-hub==0.26
|
8 |
+
tensorflow
|
9 |
+
Pillow
|
10 |
+
types-pytz
|
11 |
+
fastapi
|
12 |
+
uvicorn[standard]
|
13 |
+
python-multipart
|
static/script.js
ADDED
@@ -0,0 +1,90 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
document.addEventListener('DOMContentLoaded', () => {
|
2 |
+
const sentimentBtn = document.getElementById('sentiment-btn');
|
3 |
+
const catDogBtn = document.getElementById('cat-dog-btn');
|
4 |
+
const sentimentInterface = document.getElementById('sentiment-interface');
|
5 |
+
const catDogInterface = document.getElementById('cat-dog-interface');
|
6 |
+
|
7 |
+
const sentimentForm = document.getElementById('sentiment-form');
|
8 |
+
const catDogForm = document.getElementById('cat-dog-form');
|
9 |
+
const tweetText = document.getElementById('tweet-text');
|
10 |
+
const imageUpload = document.getElementById('image-upload');
|
11 |
+
const imagePreview = document.getElementById('image-preview');
|
12 |
+
|
13 |
+
const sentimentResult = document.getElementById('sentiment-result');
|
14 |
+
const catDogResult = document.getElementById('cat-dog-result');
|
15 |
+
|
16 |
+
function switchModelView(activeBtn, activeInterface) {
|
17 |
+
[sentimentBtn, catDogBtn].forEach(btn => btn.classList.remove('active'));
|
18 |
+
activeBtn.classList.add('active');
|
19 |
+
|
20 |
+
[sentimentInterface, catDogInterface].forEach(intf => intf.classList.remove('active'));
|
21 |
+
activeInterface.classList.add('active');
|
22 |
+
}
|
23 |
+
|
24 |
+
sentimentBtn.addEventListener('click', () => switchModelView(sentimentBtn, sentimentInterface));
|
25 |
+
catDogBtn.addEventListener('click', () => switchModelView(catDogBtn, catDogInterface));
|
26 |
+
|
27 |
+
imageUpload.addEventListener('change', () => {
|
28 |
+
const file = imageUpload.files[0];
|
29 |
+
if (file) {
|
30 |
+
const reader = new FileReader();
|
31 |
+
reader.onload = (e) => {
|
32 |
+
imagePreview.innerHTML = `<img src="${e.target.result}" alt="Image preview">`;
|
33 |
+
};
|
34 |
+
reader.readAsDataURL(file);
|
35 |
+
}
|
36 |
+
});
|
37 |
+
|
38 |
+
sentimentForm.addEventListener('submit', async (e) => {
|
39 |
+
e.preventDefault();
|
40 |
+
const text = tweetText.value.trim();
|
41 |
+
if (!text) return;
|
42 |
+
|
43 |
+
showResult(sentimentResult, 'Analyzing...', 'loading');
|
44 |
+
|
45 |
+
try {
|
46 |
+
const response = await fetch('/predict/sentiment', {
|
47 |
+
method: 'POST',
|
48 |
+
headers: { 'Content-Type': 'application/json' },
|
49 |
+
body: JSON.stringify({ text })
|
50 |
+
});
|
51 |
+
const data = await response.json();
|
52 |
+
if (!response.ok) throw new Error(data.detail || 'Prediction failed');
|
53 |
+
|
54 |
+
showResult(sentimentResult, `Prediction: ${data.prediction}`, 'success');
|
55 |
+
} catch (error) {
|
56 |
+
showResult(sentimentResult, `Error: ${error.message}`, 'error');
|
57 |
+
}
|
58 |
+
});
|
59 |
+
|
60 |
+
catDogForm.addEventListener('submit', async (e) => {
|
61 |
+
e.preventDefault();
|
62 |
+
const file = imageUpload.files[0];
|
63 |
+
if (!file) return;
|
64 |
+
|
65 |
+
showResult(catDogResult, 'Classifying...', 'loading');
|
66 |
+
|
67 |
+
const formData = new FormData();
|
68 |
+
formData.append('file', file);
|
69 |
+
|
70 |
+
try {
|
71 |
+
const response = await fetch('/predict/catdog', {
|
72 |
+
method: 'POST',
|
73 |
+
body: formData
|
74 |
+
});
|
75 |
+
const data = await response.json();
|
76 |
+
if (!response.ok) throw new Error(data.detail || 'Classification failed');
|
77 |
+
|
78 |
+
showResult(catDogResult, `Prediction: ${data.prediction}`, 'success');
|
79 |
+
} catch (error) {
|
80 |
+
showResult(catDogResult, `Error: ${error.message}`, 'error');
|
81 |
+
}
|
82 |
+
});
|
83 |
+
|
84 |
+
function showResult(element, message, type) {
|
85 |
+
element.innerHTML = message;
|
86 |
+
element.className = 'result-display';
|
87 |
+
element.classList.add(type);
|
88 |
+
element.style.display = 'block';
|
89 |
+
}
|
90 |
+
});
|
static/style.css
ADDED
@@ -0,0 +1,194 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
body {
|
2 |
+
font-family: 'Inter', sans-serif;
|
3 |
+
background-color: #f0f2f5;
|
4 |
+
color: #333;
|
5 |
+
margin: 0;
|
6 |
+
padding: 20px;
|
7 |
+
display: flex;
|
8 |
+
justify-content: center;
|
9 |
+
align-items: flex-start;
|
10 |
+
min-height: 100vh;
|
11 |
+
}
|
12 |
+
|
13 |
+
.container {
|
14 |
+
width: 100%;
|
15 |
+
max-width: 800px;
|
16 |
+
background-color: #ffffff;
|
17 |
+
border-radius: 8px;
|
18 |
+
box-shadow: 0 4px 12px rgba(0, 0, 0, 0.08);
|
19 |
+
overflow: hidden;
|
20 |
+
}
|
21 |
+
|
22 |
+
header {
|
23 |
+
text-align: center;
|
24 |
+
padding: 24px;
|
25 |
+
border-bottom: 1px solid #e8e8e8;
|
26 |
+
}
|
27 |
+
|
28 |
+
header h1 {
|
29 |
+
margin: 0 0 8px 0;
|
30 |
+
font-size: 28px;
|
31 |
+
font-weight: 700;
|
32 |
+
color: #1a73e8;
|
33 |
+
}
|
34 |
+
|
35 |
+
header p {
|
36 |
+
margin: 0;
|
37 |
+
color: #666;
|
38 |
+
}
|
39 |
+
|
40 |
+
.model-selector {
|
41 |
+
display: flex;
|
42 |
+
justify-content: center;
|
43 |
+
gap: 12px;
|
44 |
+
padding: 24px;
|
45 |
+
background-color: #f7f9fc;
|
46 |
+
}
|
47 |
+
|
48 |
+
.model-btn {
|
49 |
+
padding: 10px 20px;
|
50 |
+
font-size: 14px;
|
51 |
+
font-weight: 600;
|
52 |
+
border: 1px solid #dcdcdc;
|
53 |
+
border-radius: 20px;
|
54 |
+
background-color: #ffffff;
|
55 |
+
color: #555;
|
56 |
+
cursor: pointer;
|
57 |
+
transition: all 0.2s ease-in-out;
|
58 |
+
}
|
59 |
+
|
60 |
+
.model-btn:hover {
|
61 |
+
background-color: #f1f3f4;
|
62 |
+
border-color: #c0c0c0;
|
63 |
+
}
|
64 |
+
|
65 |
+
.model-btn.active {
|
66 |
+
background-color: #1a73e8;
|
67 |
+
color: #ffffff;
|
68 |
+
border-color: #1a73e8;
|
69 |
+
}
|
70 |
+
|
71 |
+
.model-btn.disabled {
|
72 |
+
background-color: #f5f5f5;
|
73 |
+
color: #b0b0b0;
|
74 |
+
cursor: not-allowed;
|
75 |
+
border-color: #e0e0e0;
|
76 |
+
}
|
77 |
+
|
78 |
+
main {
|
79 |
+
padding: 32px;
|
80 |
+
}
|
81 |
+
|
82 |
+
.model-interface {
|
83 |
+
display: none;
|
84 |
+
}
|
85 |
+
|
86 |
+
.model-interface.active {
|
87 |
+
display: block;
|
88 |
+
}
|
89 |
+
|
90 |
+
form {
|
91 |
+
background-color: #ffffff;
|
92 |
+
border: 1px solid #e8e8e8;
|
93 |
+
border-radius: 8px;
|
94 |
+
padding: 24px;
|
95 |
+
}
|
96 |
+
|
97 |
+
form h2 {
|
98 |
+
margin-top: 0;
|
99 |
+
margin-bottom: 8px;
|
100 |
+
font-size: 20px;
|
101 |
+
}
|
102 |
+
|
103 |
+
form p {
|
104 |
+
margin-top: 0;
|
105 |
+
margin-bottom: 24px;
|
106 |
+
color: #666;
|
107 |
+
}
|
108 |
+
|
109 |
+
label {
|
110 |
+
display: block;
|
111 |
+
font-weight: 600;
|
112 |
+
margin-bottom: 8px;
|
113 |
+
}
|
114 |
+
|
115 |
+
textarea, input[type="file"] {
|
116 |
+
width: 100%;
|
117 |
+
box-sizing: border-box;
|
118 |
+
}
|
119 |
+
|
120 |
+
textarea {
|
121 |
+
padding: 12px;
|
122 |
+
border: 1px solid #dcdcdc;
|
123 |
+
border-radius: 6px;
|
124 |
+
font-size: 14px;
|
125 |
+
min-height: 120px;
|
126 |
+
resize: vertical;
|
127 |
+
}
|
128 |
+
|
129 |
+
.predict-btn {
|
130 |
+
width: 100%;
|
131 |
+
padding: 12px;
|
132 |
+
font-size: 16px;
|
133 |
+
font-weight: 600;
|
134 |
+
border: none;
|
135 |
+
border-radius: 6px;
|
136 |
+
background-color: #28a745;
|
137 |
+
color: #ffffff;
|
138 |
+
cursor: pointer;
|
139 |
+
margin-top: 24px;
|
140 |
+
transition: background-color 0.2s;
|
141 |
+
}
|
142 |
+
|
143 |
+
.predict-btn:hover {
|
144 |
+
background-color: #218838;
|
145 |
+
}
|
146 |
+
|
147 |
+
.upload-label {
|
148 |
+
padding: 12px;
|
149 |
+
border: 1px dashed #dcdcdc;
|
150 |
+
border-radius: 6px;
|
151 |
+
text-align: center;
|
152 |
+
cursor: pointer;
|
153 |
+
display: block;
|
154 |
+
margin-bottom: 16px;
|
155 |
+
}
|
156 |
+
|
157 |
+
input[type="file"] {
|
158 |
+
display: none;
|
159 |
+
}
|
160 |
+
|
161 |
+
#image-preview {
|
162 |
+
margin-top: 16px;
|
163 |
+
text-align: center;
|
164 |
+
}
|
165 |
+
|
166 |
+
#image-preview img {
|
167 |
+
max-width: 100%;
|
168 |
+
max-height: 200px;
|
169 |
+
border-radius: 6px;
|
170 |
+
}
|
171 |
+
|
172 |
+
.result-display {
|
173 |
+
margin-top: 24px;
|
174 |
+
padding: 16px;
|
175 |
+
border-radius: 6px;
|
176 |
+
background-color: #f7f9fc;
|
177 |
+
border: 1px solid #e8e8e8;
|
178 |
+
text-align: center;
|
179 |
+
font-size: 18px;
|
180 |
+
font-weight: 600;
|
181 |
+
display: none;
|
182 |
+
}
|
183 |
+
|
184 |
+
.result-display.loading {
|
185 |
+
color: #555;
|
186 |
+
}
|
187 |
+
|
188 |
+
.result-display.success {
|
189 |
+
color: #1a73e8;
|
190 |
+
}
|
191 |
+
|
192 |
+
.result-display.error {
|
193 |
+
color: #d93025;
|
194 |
+
}
|