Spaces:
Sleeping
Sleeping
fix cache permission
Browse files- Dockerfile +3 -7
- app.py +5 -5
Dockerfile
CHANGED
@@ -1,20 +1,16 @@
|
|
1 |
-
# Use an official Python runtime as a parent image
|
2 |
FROM python:3.11-slim
|
3 |
|
4 |
-
# Set the working directory in the container
|
5 |
WORKDIR /code
|
6 |
|
7 |
-
|
|
|
|
|
8 |
COPY ./requirements.txt /code/requirements.txt
|
9 |
|
10 |
-
# Install any needed packages specified in requirements.txt
|
11 |
RUN pip install --no-cache-dir --upgrade -r /code/requirements.txt
|
12 |
|
13 |
-
# Copy the rest of the application's code to the working directory
|
14 |
COPY . /code/
|
15 |
|
16 |
-
# Expose the port the app runs on
|
17 |
EXPOSE 7860
|
18 |
|
19 |
-
# Define the command to run the application
|
20 |
CMD ["uvicorn", "app:app", "--host", "0.0.0.0", "--port", "7860"]
|
|
|
|
|
1 |
FROM python:3.11-slim
|
2 |
|
|
|
3 |
WORKDIR /code
|
4 |
|
5 |
+
ENV HF_HOME=/code/cache
|
6 |
+
RUN mkdir -p /code/cache && chmod -R 777 /code/cache
|
7 |
+
|
8 |
COPY ./requirements.txt /code/requirements.txt
|
9 |
|
|
|
10 |
RUN pip install --no-cache-dir --upgrade -r /code/requirements.txt
|
11 |
|
|
|
12 |
COPY . /code/
|
13 |
|
|
|
14 |
EXPOSE 7860
|
15 |
|
|
|
16 |
CMD ["uvicorn", "app:app", "--host", "0.0.0.0", "--port", "7860"]
|
app.py
CHANGED
@@ -12,7 +12,7 @@ from pydantic import BaseModel
|
|
12 |
from PIL import Image
|
13 |
import torch
|
14 |
import torch.nn.functional as F
|
15 |
-
from transformers import
|
16 |
import tensorflow as tf
|
17 |
import numpy as np
|
18 |
from huggingface_hub import hf_hub_download
|
@@ -34,8 +34,8 @@ def load_models():
|
|
34 |
"""Load all models from Hugging Face Hub at startup."""
|
35 |
logging.info("Loading all models from the Hub...")
|
36 |
try:
|
37 |
-
tokenizer =
|
38 |
-
sentiment_model =
|
39 |
sentiment_model.to(device)
|
40 |
logging.info("Sentiment analysis model loaded successfully.")
|
41 |
except Exception as e:
|
@@ -75,7 +75,7 @@ async def predict_sentiment(request: SentimentRequest):
|
|
75 |
with torch.no_grad():
|
76 |
outputs = sentiment_model(**inputs)
|
77 |
probabilities = F.softmax(outputs.logits, dim=-1).squeeze()
|
78 |
-
labels = ['Bearish', 'Bullish'
|
79 |
prediction = labels[torch.argmax(probabilities).item()]
|
80 |
return {"prediction": prediction}
|
81 |
except Exception as e:
|
@@ -101,4 +101,4 @@ async def predict_catdog(file: UploadFile = File(...)):
|
|
101 |
return {"prediction": label}
|
102 |
except Exception as e:
|
103 |
logging.error(f"Cat/Dog prediction error: {e}")
|
104 |
-
raise HTTPException(status_code=500, detail="An error occurred during image classification.")
|
|
|
12 |
from PIL import Image
|
13 |
import torch
|
14 |
import torch.nn.functional as F
|
15 |
+
from transformers import DistilBertTokenizer, DistilBertForSequenceClassification
|
16 |
import tensorflow as tf
|
17 |
import numpy as np
|
18 |
from huggingface_hub import hf_hub_download
|
|
|
34 |
"""Load all models from Hugging Face Hub at startup."""
|
35 |
logging.info("Loading all models from the Hub...")
|
36 |
try:
|
37 |
+
tokenizer = DistilBertTokenizer.from_pretrained("muhalwan/sental")
|
38 |
+
sentiment_model = DistilBertForSequenceClassification.from_pretrained("muhalwan/sental")
|
39 |
sentiment_model.to(device)
|
40 |
logging.info("Sentiment analysis model loaded successfully.")
|
41 |
except Exception as e:
|
|
|
75 |
with torch.no_grad():
|
76 |
outputs = sentiment_model(**inputs)
|
77 |
probabilities = F.softmax(outputs.logits, dim=-1).squeeze()
|
78 |
+
labels = ['Bearish', 'Bullish']
|
79 |
prediction = labels[torch.argmax(probabilities).item()]
|
80 |
return {"prediction": prediction}
|
81 |
except Exception as e:
|
|
|
101 |
return {"prediction": label}
|
102 |
except Exception as e:
|
103 |
logging.error(f"Cat/Dog prediction error: {e}")
|
104 |
+
raise HTTPException(status_code=500, detail="An error occurred during image classification.")
|