Spaces:
Running
on
Zero
Running
on
Zero
| import os | |
| import gradio as gr | |
| import json | |
| import logging | |
| import torch | |
| from PIL import Image | |
| import spaces | |
| from diffusers import DiffusionPipeline, AutoencoderTiny, AutoencoderKL, AutoPipelineForImage2Image | |
| from live_preview_helpers import calculate_shift, retrieve_timesteps, flux_pipe_call_that_returns_an_iterable_of_images | |
| from diffusers.utils import load_image | |
| from huggingface_hub import hf_hub_download, HfFileSystem, ModelCard, snapshot_download | |
| import copy | |
| import random | |
| import time | |
| # Load LoRAs from JSON file | |
| with open('loras.json', 'r') as f: | |
| loras = json.load(f) | |
| # Initialize the base model | |
| dtype = torch.bfloat16 | |
| device = "cuda" if torch.cuda.is_available() else "cpu" | |
| base_model = "black-forest-labs/FLUX.1-dev" | |
| taef1 = AutoencoderTiny.from_pretrained("madebyollin/taef1", torch_dtype=dtype).to(device) | |
| good_vae = AutoencoderKL.from_pretrained(base_model, subfolder="vae", torch_dtype=dtype).to(device) | |
| pipe = DiffusionPipeline.from_pretrained(base_model, torch_dtype=dtype, vae=taef1).to(device) | |
| pipe_i2i = AutoPipelineForImage2Image.from_pretrained(base_model, | |
| vae=good_vae, | |
| transformer=pipe.transformer, | |
| text_encoder=pipe.text_encoder, | |
| tokenizer=pipe.tokenizer, | |
| text_encoder_2=pipe.text_encoder_2, | |
| tokenizer_2=pipe.tokenizer_2, | |
| torch_dtype=dtype | |
| ) | |
| MAX_SEED = 2**32-1 | |
| pipe.flux_pipe_call_that_returns_an_iterable_of_images = flux_pipe_call_that_returns_an_iterable_of_images.__get__(pipe) | |
| class calculateDuration: | |
| def __init__(self, activity_name=""): | |
| self.activity_name = activity_name | |
| def __enter__(self): | |
| self.start_time = time.time() | |
| return self | |
| def __exit__(self, exc_type, exc_value, traceback): | |
| self.end_time = time.time() | |
| self.elapsed_time = self.end_time - self.start_time | |
| if self.activity_name: | |
| print(f"Elapsed time for {self.activity_name}: {self.elapsed_time:.6f} seconds") | |
| else: | |
| print(f"Elapsed time: {self.elapsed_time:.6f} seconds") | |
| def update_selection(evt: gr.SelectData, width, height): | |
| selected_lora = loras[evt.index] | |
| new_placeholder = f"Type a prompt for {selected_lora['title']}" | |
| lora_repo = selected_lora["repo"] | |
| updated_text = f"### Selected: [{lora_repo}](https://huggingface.co/{lora_repo}) ✨" | |
| if "aspect" in selected_lora: | |
| if selected_lora["aspect"] == "portrait": | |
| width = 768 | |
| height = 1024 | |
| elif selected_lora["aspect"] == "landscape": | |
| width = 1024 | |
| height = 768 | |
| else: | |
| width = 1024 | |
| height = 1024 | |
| return ( | |
| gr.update(placeholder=new_placeholder), | |
| updated_text, | |
| evt.index, | |
| width, | |
| height, | |
| ) | |
| def generate_image(prompt_mash, steps, seed, cfg_scale, width, height, lora_scale, progress): | |
| pipe.to("cuda") | |
| generator = torch.Generator(device="cuda").manual_seed(seed) | |
| with calculateDuration("Generating image"): | |
| # Generate image | |
| for img in pipe.flux_pipe_call_that_returns_an_iterable_of_images( | |
| prompt=prompt_mash, | |
| num_inference_steps=steps, | |
| guidance_scale=cfg_scale, | |
| width=width, | |
| height=height, | |
| generator=generator, | |
| joint_attention_kwargs={"scale": lora_scale}, | |
| output_type="pil", | |
| good_vae=good_vae, | |
| ): | |
| yield img | |
| def generate_image_to_image(prompt_mash, image_input_path, image_strength, steps, cfg_scale, width, height, lora_scale, seed): | |
| generator = torch.Generator(device="cuda").manual_seed(seed) | |
| pipe_i2i.to("cuda") | |
| image_input = load_image(image_input_path) | |
| final_image = pipe_i2i( | |
| prompt=prompt_mash, | |
| image=image_input, | |
| strength=image_strength, | |
| num_inference_steps=steps, | |
| guidance_scale=cfg_scale, | |
| width=width, | |
| height=height, | |
| generator=generator, | |
| joint_attention_kwargs={"scale": lora_scale}, | |
| output_type="pil", | |
| ).images[0] | |
| return final_image | |
| def run_lora(prompt, image_input, image_strength, cfg_scale, steps, selected_index, randomize_seed, seed, width, height, lora_scale, progress=gr.Progress(track_tqdm=True)): | |
| if selected_index is None: | |
| raise gr.Error("You must select a LoRA before proceeding.") | |
| selected_lora = loras[selected_index] | |
| lora_path = selected_lora["repo"] | |
| trigger_word = selected_lora["trigger_word"] | |
| if(trigger_word): | |
| if "trigger_position" in selected_lora: | |
| if selected_lora["trigger_position"] == "prepend": | |
| prompt_mash = f"{trigger_word} {prompt}" | |
| else: | |
| prompt_mash = f"{prompt} {trigger_word}" | |
| else: | |
| prompt_mash = f"{trigger_word} {prompt}" | |
| else: | |
| prompt_mash = prompt | |
| with calculateDuration("Unloading LoRA"): | |
| pipe.unload_lora_weights() | |
| pipe_i2i.unload_lora_weights() | |
| # Load LoRA weights | |
| with calculateDuration(f"Loading LoRA weights for {selected_lora['title']}"): | |
| if(image_input is not None): | |
| if "weights" in selected_lora: | |
| pipe_i2i.load_lora_weights(lora_path, weight_name=selected_lora["weights"]) | |
| else: | |
| pipe_i2i.load_lora_weights(lora_path) | |
| else: | |
| if "weights" in selected_lora: | |
| pipe.load_lora_weights(lora_path, weight_name=selected_lora["weights"]) | |
| else: | |
| pipe.load_lora_weights(lora_path) | |
| # Set random seed for reproducibility | |
| with calculateDuration("Randomizing seed"): | |
| if randomize_seed: | |
| seed = random.randint(0, MAX_SEED) | |
| if(image_input is not None): | |
| final_image = generate_image_to_image(prompt_mash, image_input, image_strength, steps, cfg_scale, width, height, lora_scale, seed) | |
| yield final_image, seed, gr.update(visible=False) | |
| else: | |
| image_generator = generate_image(prompt_mash, steps, seed, cfg_scale, width, height, lora_scale, progress) | |
| # Consume the generator to get the final image | |
| final_image = None | |
| step_counter = 0 | |
| for image in image_generator: | |
| step_counter+=1 | |
| final_image = image | |
| progress_bar = f'<div class="progress-container"><div class="progress-bar" style="--current: {step_counter}; --total: {steps};"></div></div>' | |
| yield image, seed, gr.update(value=progress_bar, visible=True) | |
| yield final_image, seed, gr.update(value=progress_bar, visible=False) | |
| def get_huggingface_safetensors(link): | |
| split_link = link.split("/") | |
| if(len(split_link) == 2): | |
| model_card = ModelCard.load(link) | |
| base_model = model_card.data.get("base_model") | |
| print(base_model) | |
| if((base_model != "black-forest-labs/FLUX.1-dev") and (base_model != "black-forest-labs/FLUX.1-schnell")): | |
| raise Exception("Not a FLUX LoRA!") | |
| image_path = model_card.data.get("widget", [{}])[0].get("output", {}).get("url", None) | |
| trigger_word = model_card.data.get("instance_prompt", "") | |
| image_url = f"https://huggingface.co/{link}/resolve/main/{image_path}" if image_path else None | |
| fs = HfFileSystem() | |
| try: | |
| list_of_files = fs.ls(link, detail=False) | |
| for file in list_of_files: | |
| if(file.endswith(".safetensors")): | |
| safetensors_name = file.split("/")[-1] | |
| if (not image_url and file.lower().endswith((".jpg", ".jpeg", ".png", ".webp"))): | |
| image_elements = file.split("/") | |
| image_url = f"https://huggingface.co/{link}/resolve/main/{image_elements[-1]}" | |
| except Exception as e: | |
| print(e) | |
| gr.Warning(f"You didn't include a link neither a valid Hugging Face repository with a *.safetensors LoRA") | |
| raise Exception(f"You didn't include a link neither a valid Hugging Face repository with a *.safetensors LoRA") | |
| return split_link[1], link, safetensors_name, trigger_word, image_url | |
| def check_custom_model(link): | |
| if(link.startswith("https://")): | |
| if(link.startswith("https://huggingface.co") or link.startswith("https://www.huggingface.co")): | |
| link_split = link.split("huggingface.co/") | |
| return get_huggingface_safetensors(link_split[1]) | |
| else: | |
| return get_huggingface_safetensors(link) | |
| def add_custom_lora(custom_lora): | |
| global loras | |
| if(custom_lora): | |
| try: | |
| title, repo, path, trigger_word, image = check_custom_model(custom_lora) | |
| print(f"Loaded custom LoRA: {repo}") | |
| card = f''' | |
| <div class="custom_lora_card"> | |
| <span>Loaded custom LoRA:</span> | |
| <div class="card_internal"> | |
| <img src="{image}" /> | |
| <div> | |
| <h3>{title}</h3> | |
| <small>{"Using: <code><b>"+trigger_word+"</code></b> as the trigger word" if trigger_word else "No trigger word found. If there's a trigger word, include it in your prompt"}<br></small> | |
| </div> | |
| </div> | |
| </div> | |
| ''' | |
| existing_item_index = next((index for (index, item) in enumerate(loras) if item['repo'] == repo), None) | |
| if(not existing_item_index): | |
| new_item = { | |
| "image": image, | |
| "title": title, | |
| "repo": repo, | |
| "weights": path, | |
| "trigger_word": trigger_word | |
| } | |
| print(new_item) | |
| existing_item_index = len(loras) | |
| loras.append(new_item) | |
| return gr.update(visible=True, value=card), gr.update(visible=True), gr.Gallery(selected_index=None), f"Custom: {path}", existing_item_index, trigger_word | |
| except Exception as e: | |
| gr.Warning(f"Invalid LoRA: either you entered an invalid link, or a non-FLUX LoRA") | |
| return gr.update(visible=True, value=f"Invalid LoRA: either you entered an invalid link, a non-FLUX LoRA"), gr.update(visible=True), gr.update(), "", None, "" | |
| else: | |
| return gr.update(visible=False), gr.update(visible=False), gr.update(), "", None, "" | |
| def remove_custom_lora(): | |
| return gr.update(visible=False), gr.update(visible=False), gr.update(), "", None, "" | |
| run_lora.zerogpu = True | |
| css = ''' | |
| #gen_btn{height: 100%} | |
| #title{text-align: center} | |
| #title h1{font-size: 3em; display:inline-flex; align-items:center} | |
| #title img{width: 100px; margin-right: 0.5em} | |
| #gallery .grid-wrap{height: 10vh} | |
| #lora_list{background: var(--block-background-fill);padding: 0 1em .3em; font-size: 90%} | |
| .card_internal{display: flex;height: 100px;margin-top: .5em} | |
| .card_internal img{margin-right: 1em} | |
| .styler{--form-gap-width: 0px !important} | |
| #progress{height:30px} | |
| #progress .generating{display:none} | |
| .progress-container {width: 100%;height: 30px;background-color: #f0f0f0;border-radius: 15px;overflow: hidden;margin-bottom: 20px} | |
| .progress-bar {height: 100%;background-color: #4f46e5;width: calc(var(--current) / var(--total) * 100%);transition: width 0.5s ease-in-out} | |
| ''' | |
| with gr.Blocks(theme=gr.themes.Soft(), css=css, delete_cache=(60, 3600)) as app: | |
| title = gr.HTML( | |
| """<h1><img src="https://huggingface.co/spaces/multimodalart/flux-lora-the-explorer/resolve/main/flux_lora.png" alt="LoRA"> FLUX LoRA the Explorer</h1>""", | |
| elem_id="title", | |
| ) | |
| selected_index = gr.State(None) | |
| with gr.Row(): | |
| with gr.Column(scale=3): | |
| prompt = gr.Textbox(label="Prompt", lines=1, placeholder="Type a prompt after selecting a LoRA") | |
| with gr.Column(scale=1, elem_id="gen_column"): | |
| generate_button = gr.Button("Generate", variant="primary", elem_id="gen_btn") | |
| with gr.Row(): | |
| with gr.Column(): | |
| selected_info = gr.Markdown("") | |
| gallery = gr.Gallery( | |
| [(item["image"], item["title"]) for item in loras], | |
| label="LoRA Gallery", | |
| allow_preview=False, | |
| columns=3, | |
| elem_id="gallery" | |
| ) | |
| with gr.Group(): | |
| custom_lora = gr.Textbox(label="Custom LoRA", info="LoRA Hugging Face path", placeholder="multimodalart/vintage-ads-flux") | |
| gr.Markdown("[Check the list of FLUX LoRas](https://huggingface.co/models?other=base_model:adapter:black-forest-labs/FLUX.1-dev)", elem_id="lora_list") | |
| custom_lora_info = gr.HTML(visible=False) | |
| custom_lora_button = gr.Button("Remove custom LoRA", visible=False) | |
| with gr.Column(): | |
| progress_bar = gr.Markdown(elem_id="progress",visible=False) | |
| result = gr.Image(label="Generated Image") | |
| with gr.Row(): | |
| with gr.Accordion("Advanced Settings", open=False): | |
| with gr.Row(): | |
| input_image = gr.Image(label="Input image", type="filepath") | |
| image_strength = gr.Slider(label="Denoise Strength", info="Lower means more image influence", minimum=0.1, maximum=1.0, step=0.01, value=0.75) | |
| with gr.Column(): | |
| with gr.Row(): | |
| cfg_scale = gr.Slider(label="CFG Scale", minimum=1, maximum=20, step=0.5, value=3.5) | |
| steps = gr.Slider(label="Steps", minimum=1, maximum=50, step=1, value=28) | |
| with gr.Row(): | |
| width = gr.Slider(label="Width", minimum=256, maximum=1536, step=64, value=1024) | |
| height = gr.Slider(label="Height", minimum=256, maximum=1536, step=64, value=1024) | |
| with gr.Row(): | |
| randomize_seed = gr.Checkbox(True, label="Randomize seed") | |
| seed = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0, randomize=True) | |
| lora_scale = gr.Slider(label="LoRA Scale", minimum=0, maximum=3, step=0.01, value=0.95) | |
| gallery.select( | |
| update_selection, | |
| inputs=[width, height], | |
| outputs=[prompt, selected_info, selected_index, width, height] | |
| ) | |
| custom_lora.input( | |
| add_custom_lora, | |
| inputs=[custom_lora], | |
| outputs=[custom_lora_info, custom_lora_button, gallery, selected_info, selected_index, prompt] | |
| ) | |
| custom_lora_button.click( | |
| remove_custom_lora, | |
| outputs=[custom_lora_info, custom_lora_button, gallery, selected_info, selected_index, custom_lora] | |
| ) | |
| gr.on( | |
| triggers=[generate_button.click, prompt.submit], | |
| fn=run_lora, | |
| inputs=[prompt, input_image, image_strength, cfg_scale, steps, selected_index, randomize_seed, seed, width, height, lora_scale], | |
| outputs=[result, seed, progress_bar] | |
| ) | |
| app.queue() | |
| app.launch() |