Spaces:
Running
on
Zero
Running
on
Zero
import gradio as gr | |
from diffusers import DiffusionPipeline | |
import spaces | |
import torch | |
from concurrent.futures import ProcessPoolExecutor | |
from huggingface_hub import hf_hub_download | |
dev_model = "black-forest-labs/FLUX.1-dev" | |
schnell_model = "black-forest-labs/FLUX.1-schnell" | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
repo_name = "ByteDance/Hyper-SD" | |
ckpt_name = "Hyper-FLUX.1-dev-8steps-lora.safetensors" | |
hyper_lora = hf_hub_download(repo_name, ckpt_name) | |
repo_name = "alimama-creative/FLUX.1-Turbo-Alpha" | |
ckpt_name = "diffusion_pytorch_model.safetensors" | |
turbo_lora = hf_hub_download(repo_name, ckpt_name) | |
pipe_dev = DiffusionPipeline.from_pretrained(dev_model, torch_dtype=torch.bfloat16).to("cuda") | |
pipe_schnell = DiffusionPipeline.from_pretrained( | |
schnell_model, | |
text_encoder=pipe_dev.text_encoder, | |
text_encoder_2=pipe_dev.text_encoder_2, | |
tokenizer=pipe_dev.tokenizer, | |
tokenizer_2=pipe_dev.tokenizer_2, | |
torch_dtype=torch.bfloat16 | |
) | |
def run_parallel_models(prompt, progress=gr.Progress(track_tqdm=True)): | |
pipe_dev.load_lora_weights(hyper_lora) | |
image = pipe_dev(prompt, num_inference_steps=8, joint_attention_kwargs={"scale": 0.125}).images[0] | |
pipe_dev.unload_lora_weights() | |
yield image, gr.update(), gr.update() | |
pipe_dev.load_lora_weights(turbo_lora) | |
image = pipe_dev(prompt, num_inference_steps=8).images[0] | |
yield gr.update(), image, gr.update() | |
pipe_dev.unload_lora_weights() | |
pipe_dev.to("cpu") | |
pipe_schnell.to("cuda") | |
image = pipe_schnell(prompt, num_inference_steps=4).images[0] | |
yield gr.update(), gr.update(), image | |
#run_parallel_models.zerogpu = True | |
css = ''' | |
#gen_btn{height: 100%} | |
#gen_column{align-self: stretch} | |
''' | |
with gr.Blocks(css=css) as demo: | |
gr.Markdown("# Low Step Flux Comparison") | |
gr.Markdown("Compare the quality (not the speed) of FLUX Schnell (4 steps), FLUX.1[dev] HyperFLUX (8 steps), FLUX.1[dev]-Turbo-Alpha (8 steps). It runs a bit slow as it's inferencing the three models.") | |
with gr.Row(): | |
with gr.Column(scale=2): | |
prompt = gr.Textbox(label="Prompt") | |
with gr.Column(scale=1, min_width=120, elem_id="gen_column"): | |
submit = gr.Button("Run", elem_id="gen_btn") | |
with gr.Row(): | |
hyper = gr.Image(label="FLUX.1[dev] HyperFLUX (8 steps)") | |
turbo = gr.Image(label="FLUX.1[dev]-Turbo-Alpha (8 steps)") | |
schnell = gr.Image(label="FLUX Schnell (4 steps)") | |
gr.Examples( | |
examples=[ | |
["the spirit of a Tamagotchi wandering in the city of Vienna"], | |
["a photo of a lavender cat"], | |
["a tiny astronaut hatching from an egg on the moon"], | |
["a delicious ceviche cheesecake slice"], | |
["an insect robot preparing a delicious meal"], | |
["a Charmander fine dining with a view to la Sagrada Família"]], | |
fn=run_parallel_models, | |
inputs=[prompt], | |
outputs=[schnell, hyper, turbo], | |
cache_examples="lazy" | |
) | |
gr.on( | |
triggers=[submit.click, prompt.submit], | |
fn=run_parallel_models, | |
inputs=[prompt], | |
outputs=[hyper, turbo, schnell] | |
) | |
demo.launch() |