import gradio as gr
from gradio_client import Client, handle_file
from google import genai
from google.genai import types
import os
from typing import Optional, List
from huggingface_hub import whoami
from PIL import Image
from io import BytesIO
import tempfile
# --- Google Gemini API Configuration ---
GOOGLE_API_KEY = os.getenv("GOOGLE_API_KEY", "")
if not GOOGLE_API_KEY:
raise ValueError("GOOGLE_API_KEY environment variable not set.")
client = genai.Client(
api_key=os.environ.get("GOOGLE_API_KEY"),
)
GEMINI_MODEL_NAME = 'gemini-2.5-flash-image-preview'
def verify_pro_status(token: Optional[gr.OAuthToken]) -> bool:
"""Verifies if the user is a Hugging Face PRO user or part of an enterprise org."""
if not token:
return False
try:
user_info = whoami(token=token.token)
if user_info.get("isPro", False):
return True
orgs = user_info.get("orgs", [])
if any(org.get("isEnterprise", False) for org in orgs):
return True
return False
except Exception as e:
print(f"Could not verify user's PRO/Enterprise status: {e}")
return False
def _extract_image_data_from_response(response) -> Optional[bytes]:
"""Helper to extract image data from the model's response."""
if hasattr(response, 'candidates') and response.candidates:
for candidate in response.candidates:
if hasattr(candidate, 'content') and hasattr(candidate.content, 'parts') and candidate.content.parts:
for part in candidate.content.parts:
if hasattr(part, 'inline_data') and hasattr(part.inline_data, 'data'):
return part.inline_data.data
return None
def unified_image_generator(
prompt: str,
images: Optional[List[str]] = None,
oauth_token: Optional[gr.OAuthToken] = None
) -> tuple:
"""
Handles all image generation tasks based on the number of input images.
Returns: (output_image_path, video_button_visible, video_output_visible)
"""
if not verify_pro_status(oauth_token):
raise gr.Error("Access Denied. This service is for PRO users only.")
try:
# Dynamically build the 'contents' list for the API
contents = []
if images:
# If there are images, open them and add to contents
for image_path in images:
print(image_path)
contents.append(Image.open(image_path[0]))
# Always add the prompt to the contents
contents.append(prompt)
response = client.models.generate_content(
model=GEMINI_MODEL_NAME,
contents=contents,
)
image_data = _extract_image_data_from_response(response)
if not image_data:
raise ValueError("No image data found in the model response.")
# Save the generated image to a temporary file to return its path
pil_image = Image.open(BytesIO(image_data))
with tempfile.NamedTemporaryFile(delete=False, suffix=".png") as tmpfile:
pil_image.save(tmpfile.name)
output_path = tmpfile.name
# Determine if video button should be shown (only if exactly 1 input image)
show_video_button = images and len(images) == 1
# Return output image path, video button visibility, and hide video output
return output_path, gr.update(visible=show_video_button), gr.update(visible=False)
except Exception as e:
raise gr.Error(f"Image generation failed: {e}")
def create_video_transition(
input_image_gallery: List[str],
prompt_input: str,
output_image: str,
oauth_token: Optional[gr.OAuthToken] = None
) -> tuple:
"""
Creates a video transition between the input and output images.
Returns: (video_path, video_visible)
"""
if not verify_pro_status(oauth_token):
raise gr.Error("Access Denied. This service is for PRO users only.")
if not input_image_gallery or not output_image:
raise gr.Error("Both input and output images are required for video creation.")
try:
video_client = Client("multimodalart/wan-2-2-first-last-frame", hf_token=oauth_token.token)
input_image_path = input_image_gallery[0][0]
result = video_client.predict(
start_image_pil=handle_file(input_image_path),
end_image_pil=handle_file(output_image),
prompt=prompt_input,
api_name="/generate_video"
)
print(result)
return result[0]["video"]
except Exception as e:
raise gr.Error(f"Video creation failed: {e}")
# --- Gradio App UI ---
css = '''
#sub_title{margin-top: -35px !important}
.tab-wrapper{margin-bottom: -33px !important}
.tabitem{padding: 0px !important}
.fillable{max-width: 980px !important}
.dark .progress-text {color: white}
.logo-dark{display: none}
.dark .logo-dark{display: block !important}
.dark .logo-light{display: none}
.grid-container img{object-fit: contain}
.grid-container {display: grid;grid-template-columns: repeat(2, 1fr)}
.grid-container:has(> .gallery-item:only-child) {grid-template-columns: 1fr}
#wan_ad p{text-align: center;padding: .5em}
'''
with gr.Blocks(theme=gr.themes.Citrus(), css=css) as demo:
gr.HTML('''
''')
gr.HTML("