Spaces:
Running
on
Zero
Running
on
Zero
import gradio as gr | |
import spaces | |
from diffusers import StableDiffusionXLPipeline | |
import numpy as np | |
import math | |
import torch | |
import random | |
from gradio_imageslider import ImageSlider | |
theme = gr.themes.Base( | |
font=[gr.themes.GoogleFont('Libre Franklin'), gr.themes.GoogleFont('Public Sans'), 'system-ui', 'sans-serif'], | |
) | |
pipe = StableDiffusionXLPipeline.from_pretrained( | |
"stabilityai/stable-diffusion-xl-base-1.0", | |
custom_pipeline="multimodalart/sdxl_perturbed_attention_guidance", | |
torch_dtype=torch.float16 | |
) | |
device="cuda" | |
pipe = pipe.to(device) | |
def run(prompt, negative_prompt=None, guidance_scale=7.0, pag_scale=3.0, pag_layers=["mid"], randomize_seed=True, seed=42, lora=None, progress=gr.Progress(track_tqdm=True)): | |
prompt = prompt.strip() | |
negative_prompt = negative_prompt.strip() if negative_prompt and negative_prompt.strip() else None | |
print(f"Initial seed for prompt `{prompt}`", seed) | |
if(randomize_seed): | |
seed = random.randint(0, 9007199254740991) | |
if not prompt and not negative_prompt: | |
guidance_scale = 0.0 | |
pipe.unfuse_lora() | |
pipe.unload_lora_weights() | |
if lora: | |
pipe.load_lora_weights(lora) | |
pipe.fuse_lora(lora_scale=0.9) | |
print(f"Seed before sending to generator for prompt: `{prompt}`", seed) | |
generator = torch.Generator(device="cuda").manual_seed(seed) | |
image_pag = pipe(prompt, negative_prompt=negative_prompt, guidance_scale=guidance_scale, pag_scale=pag_scale, pag_applied_layers=pag_layers, generator=generator, num_inference_steps=25).images[0] | |
generator = torch.Generator(device="cuda").manual_seed(seed) | |
image_normal = pipe(prompt, negative_prompt=negative_prompt, guidance_scale=guidance_scale, generator=generator, num_inference_steps=25).images[0] | |
print(f"Seed at the end of generation for prompt: `{prompt}`", seed) | |
return (image_pag, image_normal), seed | |
css = ''' | |
.gradio-container{ | |
max-width: 768px !important; | |
margin: 0 auto; | |
} | |
''' | |
with gr.Blocks(css=css, theme=theme) as demo: | |
gr.Markdown('''# Perturbed-Attention Guidance SDXL | |
SDXL 🧨 [diffusers implementation](https://huggingface.co/multimodalart/sdxl_perturbed_attention_guidance) of [Perturbed-Attenton Guidance](https://ku-cvlab.github.io/Perturbed-Attention-Guidance/) | |
''') | |
with gr.Group(): | |
with gr.Row(): | |
prompt = gr.Textbox(show_label=False, scale=4, placeholder="Your prompt", info="Leave blank to test unconditional generation") | |
button = gr.Button("Generate", min_width=120) | |
output = ImageSlider(label="Left: PAG, Right: No PAG", interactive=False) | |
with gr.Accordion("Advanced Settings", open=False): | |
guidance_scale = gr.Number(label="CFG Guidance Scale", info="The guidance scale for CFG, ignored if no prompt is entered (unconditional generation)", value=7.0) | |
negative_prompt = gr.Textbox(label="Negative prompt", info="Is only applied for the CFG part, leave blank for unconditional generation") | |
pag_scale = gr.Number(label="Pag Scale", value=3.0) | |
pag_layers = gr.Dropdown(label="Model layers to apply Pag to", info="mid is the one used on the paper, up and down blocks seem unstable", choices=["up", "mid", "down"], multiselect=True, value="mid") | |
randomize_seed = gr.Checkbox(label="Randomize seed", value=True) | |
seed = gr.Slider(minimum=1, maximum=9007199254740991, step=1, randomize=True) | |
lora = gr.Textbox(label="Custom LoRA path", info="Load a custom LoRA from Hugging Face to use PAG with") | |
gr.Examples(fn=run, examples=[" ", "an insect robot preparing a delicious meal, anime style", "a photo of a group of friends at an amusement park"], inputs=prompt, outputs=[output, seed], cache_examples="lazy") | |
gr.on( | |
triggers=[ | |
button.click, | |
prompt.submit | |
], | |
fn=run, | |
inputs=[prompt, negative_prompt, guidance_scale, pag_scale, pag_layers, randomize_seed, seed, lora], | |
outputs=[output, seed], | |
) | |
if __name__ == "__main__": | |
demo.launch(share=True) |