Spaces:
Running
Running
Update app.py (#1)
Browse files- Update app.py (3584502b78ee6c0e35bdacb5fc16f285f3d3e91b)
app.py
CHANGED
@@ -1,45 +1,51 @@
|
|
1 |
-
|
2 |
from transformers import pipeline
|
3 |
from PIL import Image
|
4 |
import io
|
5 |
|
6 |
-
|
|
|
7 |
|
8 |
-
# Load model
|
9 |
-
|
10 |
-
|
11 |
-
|
|
|
|
|
|
|
12 |
|
13 |
-
|
14 |
-
def home():
|
15 |
-
return "Food Image Classifier API is running!"
|
16 |
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
return jsonify({"error": "No file provided"}), 400
|
21 |
|
22 |
-
|
23 |
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
|
28 |
-
|
|
|
|
|
|
|
|
|
29 |
results = classifier(image)
|
30 |
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
|
|
|
1 |
+
import streamlit as st
|
2 |
from transformers import pipeline
|
3 |
from PIL import Image
|
4 |
import io
|
5 |
|
6 |
+
# Set Streamlit page config
|
7 |
+
st.set_page_config(page_title="Food Image Classifier", layout="centered")
|
8 |
|
9 |
+
# Load the model
|
10 |
+
@st.cache_resource
|
11 |
+
def load_model():
|
12 |
+
st.text("Loading model...")
|
13 |
+
model = pipeline("image-classification", model="Xenova/mobilenet_v2_1.0_224")
|
14 |
+
st.text("Model loaded successfully!")
|
15 |
+
return model
|
16 |
|
17 |
+
classifier = load_model()
|
|
|
|
|
18 |
|
19 |
+
# Streamlit UI
|
20 |
+
st.title("🍕🥖 Food Image Classifier")
|
21 |
+
st.write("Upload an image of **roti, pizza, naan, or tofu** to classify.")
|
|
|
22 |
|
23 |
+
uploaded_file = st.file_uploader("Choose an image...", type=["jpg", "jpeg", "png"])
|
24 |
|
25 |
+
if uploaded_file is not None:
|
26 |
+
# Convert file to PIL image
|
27 |
+
image = Image.open(uploaded_file)
|
28 |
|
29 |
+
# Display the uploaded image
|
30 |
+
st.image(image, caption="Uploaded Image", use_column_width=True)
|
31 |
+
|
32 |
+
# Classify the image
|
33 |
+
with st.spinner("Classifying..."):
|
34 |
results = classifier(image)
|
35 |
|
36 |
+
# Display results
|
37 |
+
if results:
|
38 |
+
label = results[0]['label']
|
39 |
+
confidence = results[0]['score'] * 100 # Convert to percentage
|
40 |
+
|
41 |
+
st.success(f"**Prediction:** {label}")
|
42 |
+
st.info(f"**Confidence:** {confidence:.2f}%")
|
43 |
+
|
44 |
+
# Option to classify another image
|
45 |
+
st.button("Classify Another Image", on_click=lambda: st.experimental_rerun())
|
46 |
+
|
47 |
+
# Footer
|
48 |
+
st.markdown("---")
|
49 |
+
st.markdown("Made by **Muneeb Sahaf** | Final Year Project 2025")
|
50 |
+
|
51 |
+
|