Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,38 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
from transformers import AutoModelForCausalLM, AutoProcessor
|
3 |
+
from PIL import Image
|
4 |
+
import torch
|
5 |
+
|
6 |
+
# Load the model and processor
|
7 |
+
@st.cache_resource
|
8 |
+
def load_model():
|
9 |
+
st.text("Loading model...")
|
10 |
+
processor = AutoProcessor.from_pretrained("vikhyatk/moondream2", trust_remote_code=True)
|
11 |
+
model = AutoModelForCausalLM.from_pretrained(
|
12 |
+
"vikhyatk/moondream2",
|
13 |
+
revision="2025-03-27",
|
14 |
+
trust_remote_code=True,
|
15 |
+
# device_map="auto" # Enable if running on GPU
|
16 |
+
)
|
17 |
+
st.text("Model loaded successfully!")
|
18 |
+
return model, processor
|
19 |
+
|
20 |
+
model, processor = load_model()
|
21 |
+
|
22 |
+
# File uploader
|
23 |
+
uploaded_file = st.file_uploader("Upload an image of a dish", type=["jpg", "jpeg", "png"])
|
24 |
+
|
25 |
+
if uploaded_file:
|
26 |
+
image = Image.open(uploaded_file).convert("RGB")
|
27 |
+
st.image(image, caption="Uploaded Image", use_column_width=True)
|
28 |
+
|
29 |
+
# Auto-ask the food question
|
30 |
+
question = "What food is in this image?" # or try: "What is the name of the dish?"
|
31 |
+
|
32 |
+
if st.button("Classify Dish"):
|
33 |
+
inputs = processor(image, question, return_tensors="pt").to(model.device)
|
34 |
+
with torch.no_grad():
|
35 |
+
output = model.generate(**inputs, max_new_tokens=64)
|
36 |
+
answer = processor.batch_decode(output, skip_special_tokens=True)[0].strip()
|
37 |
+
|
38 |
+
st.success(f"🍽️ Predicted Dish: **{answer}**")
|