import gradio as gr from fastai.vision.all import * import skimage learn = load_learner('export.pkl') labels = learn.dls.vocab def predict(img): img = PILImage.create(img) pred,pred_idx,probs = learn.predict(img) return {labels[i]: float(probs[i]) for i in range(len(labels))} title = "Bear Classifier" description = "A classifier that differentiates between grizzly, black, and teddy bears." examples = [f'examples/{bear_type}.jpg' for bear_type in {'grizzly', 'black', 'teddy'}] queue_size = 20 demo = gr.Interface( fn=predict, inputs=gr.Image(width=512, height=512), outputs=gr.Label(num_top_classes=3), title=title, description=description, examples=examples ) demo.queue(max_size=queue_size) demo.launch()