Spaces:
Sleeping
Sleeping
import gradio as gr | |
from huggingface_hub import InferenceClient | |
# Initialize the InferenceClient | |
client = InferenceClient("HuggingFaceH4/zephyr-7b-beta") | |
def respond( | |
message: str, | |
history: list[tuple[str, str]], | |
system_message: str, | |
max_tokens: int, | |
temperature: float, | |
top_p: float, | |
) -> str: | |
""" | |
Generate a response based on the user's message and chat history. | |
Args: | |
message (str): The user's message. | |
history (list[tuple[str, str]]): The chat history. | |
system_message (str): The system message. | |
max_tokens (int): The maximum number of tokens in the response. | |
temperature (float): The temperature for sampling. | |
top_p (float): The top-p (nucleus) sampling value. | |
Returns: | |
str: The generated response. | |
""" | |
messages = [{"role": "system", "content": system_message}] | |
for user_msg, assistant_msg in history: | |
if user_msg: | |
messages.append({"role": "user", "content": user_msg}) | |
if assistant_msg: | |
messages.append({"role": "assistant", "content": assistant_msg}) | |
messages.append({"role": "user", "content": message}) | |
response = "" | |
for message in client.chat_completion( | |
messages, | |
max_tokens=max_tokens, | |
stream=True, | |
temperature=temperature, | |
top_p=top_p, | |
): | |
token = message.choices[0].delta.content | |
response += token | |
yield response | |
# Create the Gradio ChatInterface | |
demo = gr.ChatInterface( | |
respond, | |
additional_inputs=[ | |
gr.Textbox(value="You are a friendly Chatbot.", label="System message"), | |
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), | |
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), | |
gr.Slider( | |
minimum=0.1, | |
maximum=1.0, | |
value=0.95, | |
step=0.05, | |
label="Top-p (nucleus sampling)", | |
), | |
], | |
theme="default", # Apply the default theme | |
css=".gradio-container {background-color: #E0F7FA;}" # Set a light blue background | |
) | |
if __name__ == "__main__": | |
demo.launch() |