import gradio as gr from huggingface_hub import InferenceClient # Initialize the InferenceClient client = InferenceClient("HuggingFaceH4/zephyr-7b-beta") def respond( message: str, history: list[tuple[str, str]], system_message: str, max_tokens: int, temperature: float, top_p: float, ) -> str: """ Generate a response based on the user's message and chat history. Args: message (str): The user's message. history (list[tuple[str, str]]): The chat history. system_message (str): The system message. max_tokens (int): The maximum number of tokens in the response. temperature (float): The temperature for sampling. top_p (float): The top-p (nucleus) sampling value. Returns: str: The generated response. """ messages = [{"role": "system", "content": system_message}] for user_msg, assistant_msg in history: if user_msg: messages.append({"role": "user", "content": user_msg}) if assistant_msg: messages.append({"role": "assistant", "content": assistant_msg}) messages.append({"role": "user", "content": message}) response = "" for message in client.chat_completion( messages, max_tokens=max_tokens, stream=True, temperature=temperature, top_p=top_p, ): token = message.choices[0].delta.content response += token yield response # Create the Gradio ChatInterface demo = gr.ChatInterface( respond, additional_inputs=[ gr.Textbox(value="You are a friendly Chatbot.", label="System message"), gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), gr.Slider( minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)", ), ], theme="default", # Apply the default theme css=".gradio-container {background-color: #E0F7FA;}" # Set a light blue background ) if __name__ == "__main__": demo.launch()