|
import os |
|
|
|
|
|
os.environ["HF_HOME"] = "/data/.cache/huggingface" |
|
|
|
from huggingface_hub import snapshot_download |
|
import streamlit as st |
|
from utils.help import get_disclaimer |
|
from utils.format import sec_to_time, fix_latex, get_youtube_embed |
|
from utils.rag_utils import load_youtube_data, load_book_data, load_summary, embed_question_sentence_transformer, fixed_knn_retrieval, get_random_question |
|
from utils.system_prompts import get_expert_system_prompt, get_synthesis_system_prompt |
|
from utils.openai_utils import embed_question_openai, openai_domain_specific_answer_generation, openai_context_integration |
|
from utils.llama_utils import get_bnb_config, load_base_model, load_fine_tuned_model, generate_response |
|
|
|
st.set_page_config(page_title="AI University") |
|
|
|
st.markdown(""" |
|
<style> |
|
.video-wrapper { |
|
position: relative; |
|
padding-bottom: 56.25%; |
|
height: 0; |
|
} |
|
.video-wrapper iframe { |
|
position: absolute; |
|
top: 0; |
|
left: 0; |
|
width: 100%; |
|
height: 100%; |
|
} |
|
</style> |
|
""", unsafe_allow_html=True) |
|
|
|
|
|
|
|
|
|
HOME = "/home/user/app" |
|
|
|
data_dir = HOME +"/data" |
|
private_data_dir = HOME + "/private_data" |
|
|
|
|
|
os.makedirs(private_data_dir, exist_ok=True) |
|
token = os.getenv("data") |
|
local_repo_path = snapshot_download( |
|
repo_id="my-ai-university/data", |
|
use_auth_token=token, |
|
repo_type="dataset", |
|
local_dir=private_data_dir, |
|
) |
|
|
|
adapter_path = HOME + "/LLaMA-TOMMI-1.0/" |
|
|
|
base_model_path = "meta-llama/Llama-3.2-11B-Vision-Instruct" |
|
base_model_path_3B = "meta-llama/Llama-3.2-3B-Instruct" |
|
|
|
|
|
|
|
st.title(":red[AI University] :gray[/] FEM") |
|
st.markdown(""" |
|
Welcome to <span style='color:red'><a href='https://my-ai-university.com/' target='_blank' style='text-decoration: none; color: red;'>AI University</a></span> β an AI-powered platform designed to address scientific course queries, dynamically adapting to instructors' teaching styles and students' learning needs. |
|
This prototype showcases the capabilities of the <span style='color:red'><a href='https://github.com/my-ai-university' target='_blank' style='text-decoration: none; color: red;'>AI University platform</a></span> by providing expert answers to queries related to a graduate-level <span style='color:red'><a href='https://www.youtube.com/playlist?list=PLJhG_d-Sp_JHKVRhfTgDqbic_4MHpltXZ' target='_blank' style='text-decoration: none; color: red;'>Finite Element Method (FEM)</a></span> course. |
|
""", unsafe_allow_html=True) |
|
|
|
st.markdown(" ") |
|
with st.container(border=False): |
|
|
|
st.info(""" |
|
Initial use may be delayed while demo loads following extended downtime. Heavy traffic or GPU limits may increase response time or cause errors. Disable expert model for faster replies or try again later. |
|
""", icon="π") |
|
|
|
if 'activate_expert' in st.session_state: |
|
st.session_state.activate_expert = st.toggle("Use expert model", value=st.session_state.activate_expert, key="use_expert_model1") |
|
else: |
|
st.session_state.activate_expert = st.toggle("Use expert model", value=True, key="use_expert_model1", help='More accurate but slower') |
|
|
|
st.markdown(" ") |
|
st.markdown(" ") |
|
|
|
|
|
|
|
with st.sidebar: |
|
st.header("Settings") |
|
|
|
with st.expander('Embedding model',expanded=True): |
|
|
|
|
|
|
|
embedding_model = st.selectbox("Choose content embedding model", [ |
|
"text-embedding-3-small", |
|
|
|
"all-MiniLM-L6-v2", |
|
|
|
], |
|
|
|
|
|
|
|
|
|
|
|
) |
|
st.divider() |
|
|
|
st.write('**Video lectures**') |
|
if embedding_model == "all-MiniLM-L6-v2": |
|
yt_token_choice = st.select_slider("Token per content", [128, 256], value=256, help="Larger values lead to an increase in the length of each retrieved piece of content", key="yt_token_len") |
|
elif embedding_model == "text-embedding-3-small": |
|
yt_token_choice = st.select_slider("Token per content", [256, 512, 1024], value=256, help="Larger values lead to an increase in the length of each retrieved piece of content", key="yt_token_len") |
|
yt_chunk_tokens = yt_token_choice |
|
yt_max_content = {128: 32, 256: 16, 512: 8, 1024: 4}[yt_chunk_tokens] |
|
top_k_YT = st.slider("Number of content pieces to retrieve", 0, yt_max_content, 4, key="yt_token_num") |
|
yt_overlap_tokens = yt_chunk_tokens // 4 |
|
|
|
st.divider() |
|
|
|
st.write('**Textbook**') |
|
show_textbook = False |
|
|
|
|
|
if embedding_model == "all-MiniLM-L6-v2": |
|
latex_token_choice = st.select_slider("Token per content", [128, 256], value=256, help="Larger values lead to an increase in the length of each retrieved piece of content", key="latex_token_len") |
|
elif embedding_model == "text-embedding-3-small": |
|
latex_token_choice = st.select_slider("Token per content", [128, 256, 512, 1024], value=256, help="Larger values lead to an increase in the length of each retrieved piece of content", key="latex_token_len") |
|
latex_chunk_tokens = latex_token_choice |
|
latex_max_content = {128: 32, 256: 16, 512: 8, 1024: 4}[latex_chunk_tokens] |
|
top_k_Latex = st.slider("Number of content pieces to retrieve", 0, latex_max_content, 4, key="latex_token_num") |
|
|
|
latex_overlap_tokens = 0 |
|
|
|
st.write(' ') |
|
with st.expander('Expert model', expanded=False): |
|
if st.session_state.activate_expert: |
|
st.session_state.activate_expert = st.toggle("Use expert model", value=True) |
|
else: |
|
st.session_state.activate_expert = st.toggle("Use expert model", value=False) |
|
|
|
show_expert_responce = st.toggle("Show initial expert answer", value=False) |
|
|
|
st.session_state.expert_model = st.selectbox( |
|
"Choose the LLM model", |
|
["LLaMA-TOMMI-1.0-11B", "LLaMA-3.2-11B", "gpt-4.1-mini"], |
|
index=0, |
|
key='a1model' |
|
) |
|
|
|
if st.session_state.expert_model in ["LLaMA-TOMMI-1.0-11B", "LLaMA-3.2-11B"]: |
|
expert_do_sample = st.toggle("Enable Sampling", value=False, key='expert_sample') |
|
|
|
if expert_do_sample: |
|
expert_temperature = st.slider("Temperature", 0.0, 1.5, 0.7, key='expert_temp') |
|
expert_top_k = st.slider("Top K", 0, 100, 50, key='expert_top_k') |
|
expert_top_p = st.slider("Top P", 0.0, 1.0, 0.95, key='expert_top_p') |
|
else: |
|
expert_num_beams = st.slider("Num Beams", 1, 4, 1, key='expert_num_beams') |
|
|
|
expert_max_new_tokens = st.slider("Max New Tokens", 100, 2000, 500, step=50, key='expert_max_new_tokens') |
|
else: |
|
expert_api_temperature = st.slider("Temperature", 0.0, 1.5, 0.7, key='a1t') |
|
expert_api_top_p = st.slider("Top P", 0.0, 1.0, 0.9, key='a1p') |
|
|
|
with st.expander('Synthesis model',expanded=False): |
|
|
|
|
|
show_yt_context = st.toggle("Show retrieved video content", value=False) |
|
st.session_state.synthesis_model = st.selectbox( |
|
"Choose the LLM model", |
|
["LLaMA-3.2-3B", "gpt-4o-mini", "gpt-4.1-mini"], |
|
index=2, |
|
key='a2model' |
|
) |
|
|
|
if st.session_state.synthesis_model in ["LLaMA-3.2-3B", "LLaMA-3.2-11B"]: |
|
synthesis_do_sample = st.toggle("Enable Sampling", value=False, key='synthesis_sample') |
|
|
|
if synthesis_do_sample: |
|
synthesis_temperature = st.slider("Temperature", 0.0, 1.5, 0.7, key='synthesis_temp') |
|
synthesis_top_k = st.slider("Top K", 0, 100, 50, key='synthesis_top_k') |
|
synthesis_top_p = st.slider("Top P", 0.0, 1.0, 0.95, key='synthesis_top_p') |
|
else: |
|
synthesis_num_beams = st.slider("Num Beams", 1, 4, 1, key='synthesis_num_beams') |
|
|
|
synthesis_max_new_tokens = st.slider("Max New Tokens", 100, 2000, 1500, step=50, key='synthesis_max_new_tokens') |
|
else: |
|
|
|
synthesis_api_temperature = st.slider("Temperature", 0.0, .3, .5, help="Defines the randomness in the next token prediction. Lower: More predictable and focused. Higher: More adventurous and diverse.", key='a2t') |
|
|
|
synthesis_api_top_p = st.slider("Top P", 0.1, 0.5, .3, help="Defines the range of token choices the model can consider in the next prediction. Lower: More focused and restricted to high-probability options. Higher: More creative, allowing consideration of less likely options.", key='a2p') |
|
|
|
|
|
if "question" not in st.session_state: |
|
st.session_state.question = "" |
|
|
|
|
|
text_area_placeholder = st.empty() |
|
question_help = "Including details or instructions improves the answer." |
|
st.session_state.question = text_area_placeholder.text_area( |
|
"**Enter your query about Finite Element Method**", |
|
height=120, |
|
value=st.session_state.question, |
|
help=question_help |
|
) |
|
|
|
_, col1, col2, _ = st.columns([4, 2, 4, 3]) |
|
with col1: |
|
submit_button_placeholder = st.empty() |
|
|
|
with col2: |
|
if st.button("Random Question"): |
|
while True: |
|
random_question = get_random_question(data_dir + "/questions.txt") |
|
if random_question != st.session_state.question: |
|
break |
|
st.session_state.question = random_question |
|
text_area_placeholder.text_area( |
|
"**Enter your query about Finite Element Method:**", |
|
height=120, |
|
value=st.session_state.question, |
|
help=question_help |
|
) |
|
|
|
with st.spinner("Loading LLaMA-TOMMI-1.0-11B..."): |
|
if st.session_state.expert_model == "LLaMA-TOMMI-1.0-11B": |
|
if 'tommi_model' not in st.session_state: |
|
tommi_model, tommi_tokenizer = load_fine_tuned_model(adapter_path, base_model_path) |
|
st.session_state.tommi_model = tommi_model |
|
st.session_state.tommi_tokenizer = tommi_tokenizer |
|
|
|
|
|
with st.spinner("Loading LLaMA-3.2-11B..."): |
|
if "LLaMA-3.2-11B" in [st.session_state.expert_model, st.session_state.synthesis_model]: |
|
if 'llama_model' not in st.session_state: |
|
llama_model, llama_tokenizer = load_base_model(base_model_path) |
|
st.session_state.llama_model = llama_model |
|
st.session_state.llama_tokenizer = llama_tokenizer |
|
|
|
with st.spinner("Loading LLaMA-3.2-3B..."): |
|
if "LLaMA-3.2-3B" in [st.session_state.expert_model, st.session_state.synthesis_model]: |
|
if 'llama_model_3B' not in st.session_state: |
|
llama_model_3B, llama_tokenizer_3B = load_base_model(base_model_path_3B) |
|
st.session_state.llama_model_3B = llama_model_3B |
|
st.session_state.llama_tokenizer_3B = llama_tokenizer_3B |
|
|
|
|
|
text_data_YT, context_embeddings_YT = load_youtube_data(data_dir, embedding_model, yt_chunk_tokens, yt_overlap_tokens) |
|
text_data_Latex, context_embeddings_Latex = load_book_data(private_data_dir, embedding_model, latex_chunk_tokens, latex_overlap_tokens) |
|
summary = load_summary(data_dir + '/KG_FEM_summary.json') |
|
|
|
if 'question_answered' not in st.session_state: |
|
st.session_state.question_answered = False |
|
if 'context_by_video' not in st.session_state: |
|
st.session_state.context_by_video = {} |
|
if 'context_by_section' not in st.session_state: |
|
st.session_state.context_by_section = {} |
|
if 'answer' not in st.session_state: |
|
st.session_state.answer = "" |
|
if 'playing_video_id' not in st.session_state: |
|
st.session_state.playing_video_id = None |
|
|
|
if submit_button_placeholder.button("AI Answer", type="primary"): |
|
if st.session_state.question == "": |
|
st.markdown("") |
|
st.write("Please enter a query. :smirk:") |
|
st.session_state.question_answered = False |
|
|
|
else: |
|
with st.spinner("Finding relevant contexts..."): |
|
|
|
if embedding_model == "all-MiniLM-L6-v2": |
|
question_embedding = embed_question_sentence_transformer(st.session_state.question, model_name="all-MiniLM-L6-v2") |
|
elif embedding_model == "text-embedding-3-small": |
|
question_embedding = embed_question_openai(st.session_state.question, embedding_model) |
|
|
|
initial_max_k = int(0.1 * context_embeddings_YT.shape[0]) |
|
idx_YT = fixed_knn_retrieval(question_embedding, context_embeddings_YT, top_k=top_k_YT, min_k=0) |
|
idx_Latex = fixed_knn_retrieval(question_embedding, context_embeddings_Latex, top_k=top_k_Latex, min_k=0) |
|
|
|
relevant_contexts_YT = sorted([text_data_YT[i] for i in idx_YT], key=lambda x: x['order']) |
|
relevant_contexts_Latex = sorted([text_data_Latex[i] for i in idx_Latex], key=lambda x: x['order']) |
|
|
|
st.session_state.context_by_video = {} |
|
for context_item in relevant_contexts_YT: |
|
video_id = context_item['video_id'] |
|
if video_id not in st.session_state.context_by_video: |
|
st.session_state.context_by_video[video_id] = [] |
|
st.session_state.context_by_video[video_id].append(context_item) |
|
|
|
st.session_state.context_by_section = {} |
|
for context_item in relevant_contexts_Latex: |
|
section_id = context_item['section'] |
|
if section_id not in st.session_state.context_by_section: |
|
st.session_state.context_by_section[section_id] = [] |
|
st.session_state.context_by_section[section_id].append(context_item) |
|
|
|
context = '' |
|
for i, (video_id, contexts) in enumerate(st.session_state.context_by_video.items(), start=1): |
|
for context_item in contexts: |
|
start_time = int(context_item['start']) |
|
context += f'Video {i}, time: {sec_to_time(start_time)}:' + context_item['text'] + '\n\n' |
|
st.session_state.yt_context = fix_latex(context) |
|
|
|
for i, (section_id, contexts) in enumerate(st.session_state.context_by_section.items(), start=1): |
|
context += f'Section {i} ({section_id}):\n' |
|
for context_item in contexts: |
|
context += context_item['text'] + '\n\n' |
|
|
|
with st.spinner("Answering the question..."): |
|
|
|
|
|
|
|
if st.session_state.activate_expert: |
|
if st.session_state.expert_model in ["LLaMA-TOMMI-1.0-11B", "LLaMA-3.2-11B"]: |
|
|
|
if st.session_state.expert_model == "LLaMA-TOMMI-1.0-11B": |
|
model_ = st.session_state.tommi_model |
|
tokenizer_ = st.session_state.tommi_tokenizer |
|
|
|
elif st.session_state.expert_model == "LLaMA-3.2-11B": |
|
model_ = st.session_state.llama_model |
|
tokenizer_ = st.session_state.llama_tokenizer |
|
|
|
messages = [ |
|
{"role": "system", "content": get_expert_system_prompt()}, |
|
{"role": "user", "content": st.session_state.question} |
|
] |
|
|
|
expert_answer = generate_response( |
|
model=model_, |
|
tokenizer=tokenizer_, |
|
messages=messages, |
|
tokenizer_max_length=500, |
|
do_sample=expert_do_sample, |
|
temperature=expert_temperature if expert_do_sample else None, |
|
top_k=expert_top_k if expert_do_sample else None, |
|
top_p=expert_top_p if expert_do_sample else None, |
|
num_beams=expert_num_beams if not expert_do_sample else 1, |
|
max_new_tokens=expert_max_new_tokens |
|
) |
|
|
|
else: |
|
expert_answer = openai_domain_specific_answer_generation( |
|
get_expert_system_prompt(), |
|
st.session_state.question, |
|
model=st.session_state.expert_model, |
|
temperature=expert_api_temperature, |
|
top_p=expert_api_top_p |
|
) |
|
|
|
st.session_state.expert_answer = fix_latex(expert_answer) |
|
|
|
else: |
|
st.session_state.expert_answer = 'No Expert Answer. Only use the context.' |
|
|
|
|
|
|
|
|
|
if st.session_state.synthesis_model in ["LLaMA-3.2-3B", "LLaMA-3.2-11B"]: |
|
|
|
if st.session_state.synthesis_model == "LLaMA-3.2-11B": |
|
model_s = st.session_state.llama_model |
|
tokenizer_s = st.session_state.llama_tokenizer |
|
|
|
elif st.session_state.synthesis_model == "LLaMA-3.2-3B": |
|
model_s = st.session_state.llama_model_3B |
|
tokenizer_s = st.session_state.llama_tokenizer_3B |
|
|
|
synthesis_prompt = f""" |
|
Question: |
|
{st.session_state.question} |
|
|
|
Direct Answer: |
|
{st.session_state.expert_answer} |
|
|
|
Retrieved Context: |
|
{context} |
|
|
|
Final Answer: |
|
""" |
|
messages = [ |
|
{"role": "system", "content": get_synthesis_system_prompt("Finite Element Method")}, |
|
{"role": "user", "content": synthesis_prompt} |
|
] |
|
|
|
synthesis_answer = generate_response( |
|
model=model_s, |
|
tokenizer=tokenizer_s, |
|
messages=messages, |
|
tokenizer_max_length=30000, |
|
do_sample=synthesis_do_sample, |
|
temperature=synthesis_temperature if synthesis_do_sample else None, |
|
top_k=synthesis_top_k if synthesis_do_sample else None, |
|
top_p=synthesis_top_p if synthesis_do_sample else None, |
|
num_beams=synthesis_num_beams if not synthesis_do_sample else 1, |
|
max_new_tokens=synthesis_max_new_tokens |
|
) |
|
|
|
else: |
|
synthesis_answer = openai_context_integration( |
|
get_synthesis_system_prompt("Finite Element Method"), |
|
st.session_state.question, |
|
st.session_state.expert_answer, |
|
context, |
|
model=st.session_state.synthesis_model, |
|
temperature=synthesis_api_temperature, |
|
top_p=synthesis_api_top_p |
|
) |
|
|
|
|
|
if synthesis_answer.split()[0] == "NOT_ENOUGH_INFO": |
|
st.markdown("") |
|
st.markdown("#### Query:") |
|
st.markdown(fix_latex(st.session_state.question)) |
|
if show_expert_responce: |
|
st.markdown("#### Initial Expert Answer:") |
|
st.markdown(st.session_state.expert_answer) |
|
st.markdown("#### Answer:") |
|
st.write(":smiling_face_with_tear:") |
|
st.markdown(synthesis_answer.split('NOT_ENOUGH_INFO')[1]) |
|
st.divider() |
|
st.caption(get_disclaimer()) |
|
|
|
st.session_state.question_answered = False |
|
st.stop() |
|
else: |
|
st.session_state.answer = fix_latex(synthesis_answer) |
|
st.session_state.question_answered = True |
|
|
|
if st.session_state.question_answered: |
|
st.markdown("") |
|
st.markdown("#### Query:") |
|
st.markdown(fix_latex(st.session_state.question)) |
|
if show_expert_responce: |
|
st.markdown("#### Initial Expert Answer:") |
|
st.markdown(st.session_state.expert_answer) |
|
st.markdown("#### Answer:") |
|
st.markdown(st.session_state.answer) |
|
if show_yt_context: |
|
st.markdown("#### Retrieved lecture video transcripts:") |
|
st.markdown(st.session_state.yt_context) |
|
|
|
if top_k_YT > 0: |
|
st.markdown("#### Retrieved content in lecture videos") |
|
for i, (video_id, contexts) in enumerate(st.session_state.context_by_video.items(), start=1): |
|
|
|
with st.container(border=True): |
|
st.markdown(f"**Video {i} | {contexts[0]['title']}**") |
|
video_placeholder = st.empty() |
|
video_placeholder.markdown(get_youtube_embed(video_id, 0, 0), unsafe_allow_html=True) |
|
st.markdown('') |
|
with st.container(border=False): |
|
st.markdown("Retrieved Times") |
|
cols = st.columns([1 for i in range(len(contexts))] + [9 - len(contexts)]) |
|
for j, context_item in enumerate(contexts): |
|
start_time = int(context_item['start']) |
|
label = sec_to_time(start_time) |
|
if cols[j].button(label, key=f"{video_id}_{start_time}"): |
|
if st.session_state.playing_video_id is not None: |
|
st.session_state.playing_video_id = None |
|
video_placeholder.empty() |
|
video_placeholder.markdown(get_youtube_embed(video_id, start_time, 1), unsafe_allow_html=True) |
|
st.session_state.playing_video_id = video_id |
|
|
|
with st.expander("Video Summary", expanded=False): |
|
|
|
st.markdown(summary[video_id]) |
|
|
|
if show_textbook and top_k_Latex > 0: |
|
st.markdown("#### Retrieved content in textbook",help="The Finite Element Method: Linear Static and Dynamic Finite Element Analysis") |
|
for i, (section_id, contexts) in enumerate(st.session_state.context_by_section.items(), start=1): |
|
|
|
st.markdown(f"**Section {i} | {section_id}**") |
|
for context_item in contexts: |
|
st.markdown(context_item['text']) |
|
st.divider() |
|
|
|
st.markdown(" ") |
|
st.divider() |
|
st.caption(get_disclaimer()) |