Spaces:
Sleeping
Sleeping
File size: 13,219 Bytes
31b6ae7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 |
#!/usr/bin/env python3
"""
Batch ECG Analysis Script
Processes all ECGs in ecg_uploads_greenwich/ directory using ECG-FM Production API
Updates Greenwichschooldata.csv with comprehensive clinical analysis results
"""
import pandas as pd
import requests
import json
import time
import os
from typing import Dict, Any, List
from datetime import datetime
import traceback
# Configuration
API_BASE_URL = "https://mystic-cbk-ecg-fm-api.hf.space"
ECG_DIR = "../ecg_uploads_greenwich/"
INDEX_FILE = "../Greenwichschooldata.csv"
OUTPUT_FILE = "../Greenwichschooldata_ECG_FM_Enhanced.csv"
# ECG-FM Analysis Results Structure
class ECGFMAnalysis:
def __init__(self):
self.rhythm = None
self.heart_rate = None
self.qrs_duration = None
self.qt_interval = None
self.pr_interval = None
self.axis_deviation = None
self.abnormalities = []
self.confidence = None
self.signal_quality = None
self.features_count = None
self.processing_time = None
self.analysis_timestamp = None
self.api_status = None
self.error_message = None
def load_ecg_data(file_path: str) -> Dict[str, Any]:
"""Load ECG data from CSV file"""
try:
df = pd.read_csv(file_path)
# Convert to the format expected by the API
signal = [df[col].tolist() for col in df.columns]
# Create enhanced payload with clinical metadata
payload = {
"signal": signal,
"fs": 500, # Standard ECG sampling rate
"lead_names": ["I", "II", "III", "aVR", "aVL", "aVF", "V1", "V2", "V3", "V4", "V5", "V6"],
"recording_duration": len(signal[0]) / 500.0
}
return payload
except Exception as e:
print(f"β Error loading ECG data from {file_path}: {e}")
return None
def analyze_ecg_with_api(ecg_file: str, patient_info: Dict[str, Any]) -> ECGFMAnalysis:
"""Analyze single ECG using ECG-FM Production API"""
analysis = ECGFMAnalysis()
analysis.analysis_timestamp = datetime.now().isoformat()
try:
# Load ECG data
ecg_path = os.path.join(ECG_DIR, ecg_file)
payload = load_ecg_data(ecg_path)
if payload is None:
analysis.api_status = "Failed to load ECG data"
return analysis
print(f" π Processing: {ecg_file}")
print(f" π€ Patient: {patient_info['Patient Name']} ({patient_info['Age']} {patient_info['Gender']})")
# Test API health first
try:
health_response = requests.get(f"{API_BASE_URL}/health", timeout=30)
if health_response.status_code != 200:
analysis.api_status = f"API unhealthy: {health_response.status_code}"
return analysis
except Exception as e:
analysis.api_status = f"API connection failed: {str(e)}"
return analysis
# Perform full ECG analysis
start_time = time.time()
response = requests.post(
f"{API_BASE_URL}/analyze",
json=payload,
timeout=180 # 3 minutes for full analysis
)
total_time = time.time() - start_time
if response.status_code == 200:
analysis_data = response.json()
# Extract clinical analysis
clinical = analysis_data['clinical_analysis']
analysis.rhythm = clinical['rhythm']
analysis.heart_rate = clinical['heart_rate']
analysis.qrs_duration = clinical['qrs_duration']
analysis.qt_interval = clinical['qt_interval']
analysis.pr_interval = clinical['pr_interval']
analysis.axis_deviation = clinical['axis_deviation']
analysis.abnormalities = clinical['abnormalities']
analysis.confidence = clinical['confidence']
# Extract technical metrics
analysis.signal_quality = analysis_data['signal_quality']
analysis.features_count = len(analysis_data['features'])
analysis.processing_time = analysis_data['processing_time']
analysis.api_status = "Success"
print(f" β
Analysis completed in {analysis.processing_time}s")
print(f" π₯ Rhythm: {analysis.rhythm}, HR: {analysis.heart_rate} BPM")
print(f" π Quality: {analysis.signal_quality}, Confidence: {analysis.confidence:.2f}")
else:
analysis.api_status = f"API error: {response.status_code}"
analysis.error_message = response.text
print(f" β API error: {response.status_code} - {response.text}")
except Exception as e:
analysis.api_status = f"Processing error: {str(e)}"
analysis.error_message = traceback.format_exc()
print(f" β Processing error: {str(e)}")
return analysis
def update_index_with_ecg_fm_results(index_df: pd.DataFrame) -> pd.DataFrame:
"""Update index DataFrame with ECG-FM analysis results"""
# Add new columns for ECG-FM results
new_columns = [
'ECG_FM_Rhythm', 'ECG_FM_HeartRate', 'ECG_FM_QRS_Duration',
'ECG_FM_QT_Interval', 'ECG_FM_PR_Interval', 'ECG_FM_AxisDeviation',
'ECG_FM_Abnormalities', 'ECG_FM_Confidence', 'ECG_FM_SignalQuality',
'ECG_FM_FeaturesCount', 'ECG_FM_ProcessingTime', 'ECG_FM_AnalysisTimestamp',
'ECG_FM_APIStatus', 'ECG_FM_ErrorMessage'
]
for col in new_columns:
index_df[col] = None
# Process each ECG file
total_files = len(index_df)
successful_analyses = 0
failed_analyses = 0
print(f"\nπ Starting batch ECG analysis for {total_files} patients...")
print("=" * 80)
for index, row in index_df.iterrows():
try:
# Extract ECG filename from path
ecg_path = row['ECG File Path']
if pd.isna(ecg_path) or ecg_path == "":
print(f"β οΈ Skipping row {index + 1}: No ECG file path")
continue
ecg_file = os.path.basename(ecg_path)
# Check if ECG file exists
if not os.path.exists(os.path.join(ECG_DIR, ecg_file)):
print(f"β οΈ Skipping row {index + 1}: ECG file not found: {ecg_file}")
continue
print(f"\nπ Processing {index + 1}/{total_files}: {ecg_file}")
# Perform ECG analysis
analysis = analyze_ecg_with_api(ecg_file, row)
# Update DataFrame with results
index_df.at[index, 'ECG_FM_Rhythm'] = analysis.rhythm
index_df.at[index, 'ECG_FM_HeartRate'] = analysis.heart_rate
index_df.at[index, 'ECG_FM_QRS_Duration'] = analysis.qrs_duration
index_df.at[index, 'ECG_FM_QT_Interval'] = analysis.qt_interval
index_df.at[index, 'ECG_FM_PR_Interval'] = analysis.pr_interval
index_df.at[index, 'ECG_FM_AxisDeviation'] = analysis.axis_deviation
index_df.at[index, 'ECG_FM_Abnormalities'] = '; '.join(analysis.abnormalities) if analysis.abnormalities else None
index_df.at[index, 'ECG_FM_Confidence'] = analysis.confidence
index_df.at[index, 'ECG_FM_SignalQuality'] = analysis.signal_quality
index_df.at[index, 'ECG_FM_FeaturesCount'] = analysis.features_count
index_df.at[index, 'ECG_FM_ProcessingTime'] = analysis.processing_time
index_df.at[index, 'ECG_FM_AnalysisTimestamp'] = analysis.analysis_timestamp
index_df.at[index, 'ECG_FM_APIStatus'] = analysis.api_status
index_df.at[index, 'ECG_FM_ErrorMessage'] = analysis.error_message
if analysis.api_status == "Success":
successful_analyses += 1
else:
failed_analyses += 1
# Add delay to avoid overwhelming the API
time.sleep(2)
except Exception as e:
print(f"β Error processing row {index + 1}: {str(e)}")
index_df.at[index, 'ECG_FM_APIStatus'] = f"Row processing error: {str(e)}"
failed_analyses += 1
print("\n" + "=" * 80)
print("π BATCH ANALYSIS COMPLETE!")
print(f"π Total files: {total_files}")
print(f"β
Successful analyses: {successful_analyses}")
print(f"β Failed analyses: {failed_analyses}")
print(f"π Success rate: {(successful_analyses/total_files)*100:.1f}%")
return index_df
def generate_analysis_summary(index_df: pd.DataFrame) -> None:
"""Generate summary statistics from the enhanced dataset"""
print("\nπ ECG-FM ANALYSIS SUMMARY")
print("=" * 50)
# Filter successful analyses
successful_df = index_df[index_df['ECG_FM_APIStatus'] == 'Success']
if len(successful_df) == 0:
print("β No successful analyses to summarize")
return
print(f"π Total successful analyses: {len(successful_df)}")
# Heart Rate Analysis
hr_data = successful_df['ECG_FM_HeartRate'].dropna()
if len(hr_data) > 0:
print(f"π Heart Rate - Mean: {hr_data.mean():.1f} BPM, Range: {hr_data.min():.1f}-{hr_data.max():.1f} BPM")
# QRS Duration Analysis
qrs_data = successful_df['ECG_FM_QRS_Duration'].dropna()
if len(qrs_data) > 0:
print(f"π QRS Duration - Mean: {qrs_data.mean():.1f} ms, Range: {qrs_data.min():.1f}-{qrs_data.max():.1f} ms")
# QT Interval Analysis
qt_data = successful_df['ECG_FM_QT_Interval'].dropna()
if len(qt_data) > 0:
print(f"β±οΈ QT Interval - Mean: {qt_data.mean():.1f} ms, Range: {qt_data.min():.1f}-{qt_data.max():.1f} ms")
# Signal Quality Distribution
quality_counts = successful_df['ECG_FM_SignalQuality'].value_counts()
print(f"π Signal Quality Distribution:")
for quality, count in quality_counts.items():
print(f" {quality}: {count} ({count/len(successful_df)*100:.1f}%)")
# Confidence Analysis
conf_data = successful_df['ECG_FM_Confidence'].dropna()
if len(conf_data) > 0:
print(f"π― Analysis Confidence - Mean: {conf_data.mean():.2f}, Range: {conf_data.min():.2f}-{conf_data.max():.2f}")
# Processing Time Analysis
time_data = successful_df['ECG_FM_ProcessingTime'].dropna()
if len(time_data) > 0:
print(f"β‘ Processing Time - Mean: {time_data.mean():.3f}s, Range: {time_data.min():.3f}-{time_data.max():.3f}s")
def main():
"""Main function to run batch ECG analysis"""
print("π§ͺ ECG-FM BATCH ANALYSIS SYSTEM")
print("=" * 60)
print(f"π API URL: {API_BASE_URL}")
print(f"π ECG Directory: {ECG_DIR}")
print(f"π Index File: {INDEX_FILE}")
print(f"πΎ Output File: {OUTPUT_FILE}")
print()
# Check if files exist
if not os.path.exists(INDEX_FILE):
print(f"β Index file not found: {INDEX_FILE}")
return
if not os.path.exists(ECG_DIR):
print(f"β ECG directory not found: {ECG_DIR}")
return
# Load index file
try:
print("π Loading patient index file...")
index_df = pd.read_csv(INDEX_FILE)
print(f"β
Loaded {len(index_df)} patient records")
except Exception as e:
print(f"β Error loading index file: {e}")
return
# Check API health
try:
print("π₯ Checking API health...")
health_response = requests.get(f"{API_BASE_URL}/health", timeout=30)
if health_response.status_code == 200:
health_data = health_response.json()
print(f"β
API healthy - Models loaded: {health_data['models_loaded']}")
else:
print(f"β οΈ API health check failed: {health_response.status_code}")
proceed = input("Continue anyway? (y/n): ")
if proceed.lower() != 'y':
return
except Exception as e:
print(f"β οΈ API health check failed: {e}")
proceed = input("Continue anyway? (y/n): ")
if proceed.lower() != 'y':
return
# Process all ECGs
enhanced_df = update_index_with_ecg_fm_results(index_df)
# Generate summary
generate_analysis_summary(enhanced_df)
# Save enhanced dataset
try:
print(f"\nπΎ Saving enhanced dataset to: {OUTPUT_FILE}")
enhanced_df.to_csv(OUTPUT_FILE, index=False)
print("β
Enhanced dataset saved successfully!")
# Also save a backup with timestamp
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
backup_file = f"../Greenwichschooldata_ECG_FM_Backup_{timestamp}.csv"
enhanced_df.to_csv(backup_file, index=False)
print(f"πΎ Backup saved to: {backup_file}")
except Exception as e:
print(f"β Error saving enhanced dataset: {e}")
print(f"\nπ BATCH ANALYSIS COMPLETE!")
print(f"π Enhanced dataset: {OUTPUT_FILE}")
print(f"π Monitor your API at: {API_BASE_URL}")
if __name__ == "__main__":
main()
|