File size: 6,798 Bytes
17a1aea
 
 
 
cb17bf6
17a1aea
 
 
 
 
 
 
31b6ae7
17a1aea
31b6ae7
17a1aea
31b6ae7
17a1aea
31b6ae7
17a1aea
31b6ae7
 
 
 
 
17a1aea
31b6ae7
 
 
 
 
 
17a1aea
31b6ae7
 
 
 
 
17a1aea
31b6ae7
17a1aea
31b6ae7
 
 
 
17a1aea
31b6ae7
 
 
17a1aea
31b6ae7
 
 
 
 
17a1aea
31b6ae7
 
 
 
 
17a1aea
 
31b6ae7
17a1aea
31b6ae7
17a1aea
 
31b6ae7
 
 
 
17a1aea
31b6ae7
 
 
 
 
 
 
 
17a1aea
31b6ae7
 
 
 
 
 
 
 
 
 
 
 
 
 
17a1aea
 
31b6ae7
17a1aea
31b6ae7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
17a1aea
31b6ae7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
17a1aea
31b6ae7
 
 
 
 
17a1aea
31b6ae7
 
17a1aea
 
31b6ae7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
---
title: ECG-FM API
emoji: πŸ«€
colorFrom: blue
# FORCE REBUILD: Import logic fix for fairseq_signals deployed at 2025-08-25 08:50 UTC - AGGRESSIVE CACHE INVALIDATION - Build trigger attempt #3 - HF Spaces cache issue detected
colorTo: purple
sdk: docker
sdk_version: "latest"
app_file: server.py
pinned: false
---

# πŸ₯ ECG-FM Dual Model Production API

## πŸš€ **Production-Ready ECG Analysis with Clinical Interpretation**

A comprehensive ECG analysis API using **ECG-FM (ECG Foundation Model)** with dual-model architecture for clinical diagnosis and physiological parameter extraction.

## 🌟 **Key Features**

### **βœ… Clinical ECG Interpretation**
- **17 Clinical Labels** from MIMIC-IV-ECG dataset
- **Rhythm Classification** (Normal, AF, Bradycardia, etc.)
- **Abnormality Detection** (MI, BBB, AV blocks, etc.)
- **Clinical Confidence Scores**

### **βœ… Physiological Parameter Extraction**
- **Heart Rate (BPM)**: 30-200 range
- **QRS Duration (ms)**: 40-200 range
- **QT Interval (ms)**: 300-600 range
- **PR Interval (ms)**: 100-300 range
- **QRS Axis (degrees)**: -180 to +180 range

### **βœ… Rich ECG Features**
- **1024+ Dimensional Embeddings**
- **Temporal Patterns** (rhythm characteristics)
- **Morphological Features** (waveform analysis)
- **Spatial Relationships** (12-lead correlations)

## πŸ—οΈ **Architecture**

### **Dual Model Strategy**
1. **`mimic_iv_ecg_finetuned.pt`** (1.08 GB)
   - Clinical classifier with 17 labels
   - Priority loading for immediate clinical availability

2. **`mimic_iv_ecg_physionet_pretrained.pt`** (1.09 GB)
   - Feature extractor for physiological parameters
   - Secondary loading for comprehensive analysis

### **API Endpoints**
- **`/health`** - Health check and model status
- **`/analyze`** - Full ECG analysis (both models)
- **`/extract_features`** - Feature extraction (pretrained model)
- **`/assess_quality`** - Signal quality assessment

## πŸš€ **Quick Start**

### **API Base URL**
```
https://mystic-cbk-ecg-fm-api.hf.space
```

### **Health Check**
```bash
curl https://mystic-cbk-ecg-fm-api.hf.space/health
```

### **Full ECG Analysis**
```python
import requests
import json

# Load your ECG data
ecg_signal = [[...], [...], ...]  # 12 leads

payload = {
    "signal": ecg_signal,
    "fs": 500,
    "lead_names": ["I", "II", "III", "aVR", "aVL", "aVF", "V1", "V2", "V3", "V4", "V5", "V6"],
    "recording_duration": len(ecg_signal[0]) / 500.0
}

response = requests.post(
    "https://mystic-cbk-ecg-fm-api.hf.space/analyze",
    json=payload
)

if response.status_code == 200:
    result = response.json()
    print(f"Rhythm: {result['clinical_analysis']['rhythm']}")
    print(f"Heart Rate: {result['clinical_analysis']['heart_rate']} BPM")
    print(f"QRS Duration: {result['clinical_analysis']['qrs_duration']} ms")
    print(f"QT Interval: {result['clinical_analysis']['qt_interval']} ms")
    print(f"Signal Quality: {result['signal_quality']}")
    print(f"Features: {len(result['features'])} dimensions")
```

## πŸ“Š **Response Format**

### **Clinical Analysis**
```json
{
  "clinical_analysis": {
    "rhythm": "Normal Sinus Rhythm",
    "heart_rate": 72.5,
    "qrs_duration": 85.2,
    "qt_interval": 420.1,
    "pr_interval": 165.3,
    "axis_deviation": "Normal",
    "abnormalities": [],
    "confidence": 0.89,
    "physiological_parameters": {
      "heart_rate": 72.5,
      "qrs_duration": 85.2,
      "qt_interval": 420.1,
      "pr_interval": 165.3,
      "qrs_axis": 15.2
    }
  },
  "features": [0.123, -0.456, ...],
  "signal_quality": "Excellent",
  "processing_time": 2.45
}
```

## πŸ”¬ **Clinical Labels (17)**

The model detects these clinical conditions:
1. **Poor data quality**
2. **Sinus rhythm**
3. **Premature ventricular contraction**
4. **Tachycardia**
5. **Ventricular tachycardia**
6. **Supraventricular tachycardia with aberrancy**
7. **Atrial fibrillation**
8. **Atrial flutter**
9. **Bradycardia**
10. **Accessory pathway conduction**
11. **Atrioventricular block**
12. **1st degree atrioventricular block**
13. **Bifascicular block**
14. **Right bundle branch block**
15. **Left bundle branch block**
16. **Infarction**
17. **Electronic pacemaker**

## ⚑ **Performance**

- **Startup Time**: 5-10 minutes (first deployment)
- **Inference Time**: 2-5 seconds per ECG
- **Memory Usage**: ~2.5GB total
- **Concurrent Requests**: 10+ simultaneous analyses

## πŸ› οΈ **Technical Details**

### **Dependencies**
- **PyTorch 2.1.0** with CUDA 11.x compatibility
- **fairseq-signals** for ECG-FM model loading
- **FastAPI** for high-performance API
- **NumPy 1.26.4** for compatibility

### **Model Loading Strategy**
- **Direct HF Loading**: Models downloaded from `wanglab/ecg-fm`
- **Cache Persistence**: Uses `/app/.cache/huggingface`
- **Priority Loading**: Clinical model first, feature model second

### **Docker Configuration**
- **Base Image**: Python 3.9-slim
- **Port**: 7860 (HF Spaces standard)
- **Cache**: Persistent HF model cache

## πŸ“ˆ **Use Cases**

### **Clinical Research**
- **Population Studies**: Analyze large ECG datasets
- **Clinical Trials**: Automated ECG interpretation
- **Medical Education**: ECG analysis training

### **Healthcare**
- **Screening Programs**: Mass ECG analysis
- **Telemedicine**: Remote ECG interpretation
- **Emergency Medicine**: Rapid ECG assessment

### **Research & Development**
- **Feature Engineering**: Extract 1024+ dimensional features
- **Model Training**: Use features for custom classifiers
- **Validation Studies**: Compare with expert interpretations

## πŸ”§ **Deployment**

### **Hugging Face Spaces**
- **Automatic Deployment**: Git push triggers build
- **Model Caching**: Persistent between restarts
- **Scalability**: Handles multiple concurrent requests

### **Local Deployment**
```bash
# Clone repository
git clone https://huggingface.co/spaces/mystic-cbk/mystic-cbk-ecg-fm-api

# Install dependencies
pip install -r requirements_hf_spaces.txt

# Run server
uvicorn server:app --host 0.0.0.0 --port 7860
```

## πŸ“š **Documentation**

- **API Reference**: `/docs` (Swagger UI)
- **ReDoc**: `/redoc` (Alternative documentation)
- **Health Check**: `/health` (System status)

## 🀝 **Contributing**

This API is based on the official **ECG-FM** model from:
- **Repository**: [wanglab/ECG-FM](https://github.com/bowang-lab/ECG-FM)
- **Paper**: [ECG-FM: A Foundation Model for ECG Analysis](https://arxiv.org/abs/2308.08487)
- **License**: MIT License

## πŸ“„ **License**

MIT License - See LICENSE file for details.

## πŸ†˜ **Support**

- **Issues**: Report via GitHub Issues
- **Documentation**: Check `/docs` endpoint
- **Health Status**: Monitor `/health` endpoint

---

**Built with ❀️ using ECG-FM Foundation Model**
**Deployed on Hugging Face Spaces for global accessibility**