mystic_CBK
πŸš€ Deploy ECG-FM v2.1.0 - Physiological Parameter Extraction Now Working! - Added comprehensive physiological parameter extraction (HR, QRS, QT, PR, Axis) using ECG-FM features - Implemented statistical pattern recognition algorithms - Added clinical range validation and confidence scoring - Created comprehensive test script for real ECG samples - Updated documentation and status reports - All endpoints now provide actual measurements instead of null values
0d7408c
|
raw
history blame
4.19 kB

πŸ₯ STANDALONE ECG-FM PACKAGE FOR MIDITA SERVER INTEGRATION

🎯 Purpose

This standalone package allows you to test ECG-FM independently before integrating it into your midita_server. Once you're satisfied with the results, you can easily integrate it with minimal changes.

πŸ—οΈ Package Structure

STANDALONE_ECG_FM_PACKAGE/
β”œβ”€β”€ README.md                           # This file
β”œβ”€β”€ requirements.txt                    # Dependencies
β”œβ”€β”€ ecg_fm_client.py                   # Standalone ECG-FM client
β”œβ”€β”€ test_standalone.py                  # Independent testing script
β”œβ”€β”€ sample_ecg_data/                    # Sample ECG files for testing
β”œβ”€β”€ integration_guide.md                # How to integrate with midita_server
└── examples/                           # Usage examples

πŸš€ Quick Start

1. Install Dependencies

pip install -r requirements.txt

2. Test ECG-FM Independently

python test_standalone.py

3. Use ECG-FM Client in Your Code

from ecg_fm_client import ECGFMClient

# Initialize client
client = ECGFMClient()

# Analyze ECG
results = client.analyze_ecg(ecg_data)
print(f"Clinical Results: {results}")

πŸ”§ What This Package Provides

βœ… ECG-FM Core Functionality:

  • 17 Clinical Labels with confidence scores
  • 256-Dimensional Feature Embeddings
  • Saliency Maps (AI attention visualization)
  • Clinical Measurements (HR, QRS, QT, risk scores)
  • Signal Quality Assessment

βœ… Easy Integration:

  • Clean API Interface - Simple function calls
  • Error Handling - Robust fallback mechanisms
  • Data Validation - Input format checking
  • Performance Monitoring - Processing time tracking

βœ… Testing Capabilities:

  • Sample ECG Data - Ready-to-use test files
  • Comprehensive Testing - All ECG-FM features
  • Performance Benchmarks - Speed and accuracy metrics
  • Error Simulation - Test edge cases

πŸ“Š Expected Output Format

{
  "status": "success",
  "ecg_id": "ecg_123",
  "processing_time_ms": 1250,
  "clinical_analysis": {
    "probabilities": [0.95, 0.12, 0.03, ...],
    "labels": ["Sinus rhythm", "Tachycardia", ...],
    "confidence": 0.89,
    "primary_findings": "Sinus tachycardia with good signal quality"
  },
  "feature_analysis": {
    "embeddings": [0.123, -0.456, ...],
    "dimension": 256,
    "feature_statistics": {...}
  },
  "saliency_maps": {
    "attention_weights": [...],
    "attention_max": [...],
    "temporal_focus": "R-wave and ST-segment regions"
  },
  "clinical_measurements": {
    "heart_rate": 120,
    "qrs_duration": 85,
    "signal_quality": "Excellent",
    "clinical_risk": 6.5
  }
}

πŸ”— Integration with Midita Server

Phase 1: Testing (Current)

  • Test ECG-FM independently
  • Validate clinical accuracy
  • Performance benchmarking
  • Error handling validation

Phase 2: Integration

  • Add ECG-FM endpoints to midita_server
  • Integrate with existing ECG workflow
  • Add to user interface
  • Performance optimization

Phase 3: Production

  • Clinical validation
  • User training
  • Performance monitoring
  • Continuous improvement

πŸ“š Documentation Files

  • README.md - This overview file
  • integration_guide.md - Detailed integration instructions
  • examples/ - Code examples and use cases
  • sample_ecg_data/ - Test ECG files

πŸ†˜ Support & Troubleshooting

Common Issues:

  1. Model Loading Errors - Check HF token and internet connection
  2. Memory Issues - Ensure sufficient RAM (4GB+ recommended)
  3. Performance Issues - Check CPU/GPU availability

Getting Help:

  • Check error logs in console output
  • Verify ECG data format (12 leads, 5000 samples)
  • Ensure all dependencies are installed correctly

πŸŽ‰ Ready to Test!

This package gives you everything you need to:

  1. Test ECG-FM independently βœ…
  2. Validate clinical accuracy βœ…
  3. Benchmark performance βœ…
  4. Prepare for integration βœ…

Start with python test_standalone.py and let me know how it goes! πŸš€