Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -7,6 +7,7 @@ import tempfile
|
|
| 7 |
import os
|
| 8 |
from scipy.signal import resample
|
| 9 |
import matplotlib.pyplot as plt
|
|
|
|
| 10 |
|
| 11 |
# Custom activation functions
|
| 12 |
def sin_activation(x):
|
|
@@ -37,11 +38,11 @@ class_map = {
|
|
| 37 |
4: "Unknown"
|
| 38 |
}
|
| 39 |
|
|
|
|
| 40 |
def extract_beats(record, annotation, window_size=257):
|
| 41 |
beats = []
|
| 42 |
r_locs = annotation.sample
|
| 43 |
signal = record.p_signal[:, 0] # Using first channel
|
| 44 |
-
|
| 45 |
for r in r_locs:
|
| 46 |
start = max(0, r - window_size//2)
|
| 47 |
end = min(len(signal), r + window_size//2 + 1)
|
|
@@ -50,7 +51,54 @@ def extract_beats(record, annotation, window_size=257):
|
|
| 50 |
beats.append(beat)
|
| 51 |
return np.array(beats)
|
| 52 |
|
| 53 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 54 |
st.write("Upload MIT-BIH record files (.dat, .hea, .atr) or load record 108")
|
| 55 |
record_loaded = False
|
| 56 |
record = None
|
|
@@ -79,10 +127,8 @@ if uploaded_files and not record_loaded:
|
|
| 79 |
file_path = os.path.join(tmpdir, f.name)
|
| 80 |
with open(file_path, "wb") as f_out:
|
| 81 |
f_out.write(f.getbuffer())
|
| 82 |
-
|
| 83 |
base_names = {os.path.splitext(f.name)[0] for f in uploaded_files}
|
| 84 |
common_base = list(base_names)[0]
|
| 85 |
-
|
| 86 |
try:
|
| 87 |
record = wfdb.rdrecord(os.path.join(tmpdir, common_base))
|
| 88 |
annotation = wfdb.rdann(os.path.join(tmpdir, common_base), 'atr')
|
|
@@ -90,13 +136,13 @@ if uploaded_files and not record_loaded:
|
|
| 90 |
except Exception as e:
|
| 91 |
st.error(f"Error reading uploaded files: {str(e)}")
|
| 92 |
|
| 93 |
-
#
|
| 94 |
if record_loaded and record is not None and annotation is not None:
|
| 95 |
beats = extract_beats(record, annotation)
|
| 96 |
if len(beats) == 0:
|
| 97 |
st.error("No valid beats found in the record")
|
| 98 |
st.stop()
|
| 99 |
-
|
| 100 |
beats = beats.reshape((-1, 257, 1)).astype(np.float32)
|
| 101 |
predictions = model.predict(beats)
|
| 102 |
predicted_classes = np.argmax(predictions, axis=1)
|
|
@@ -111,27 +157,60 @@ if record_loaded and record is not None and annotation is not None:
|
|
| 111 |
|
| 112 |
# Class Distribution Section
|
| 113 |
st.subheader("Class Distribution")
|
| 114 |
-
|
| 115 |
-
# Get counts for all classes
|
| 116 |
class_indices = list(class_map.keys())
|
| 117 |
class_names = [class_map[i] for i in class_indices]
|
| 118 |
counts = [np.sum(predicted_classes == i) for i in class_indices]
|
| 119 |
-
|
| 120 |
-
# Create distribution dataframe
|
| 121 |
distribution_df = pd.DataFrame({
|
| 122 |
"Class": class_names,
|
| 123 |
"Count": counts
|
| 124 |
})
|
| 125 |
-
|
| 126 |
-
# Display in two columns
|
| 127 |
col1, col2 = st.columns([1, 2])
|
| 128 |
with col1:
|
| 129 |
st.dataframe(distribution_df.style.format({'Count': '{:,}'}))
|
| 130 |
-
|
| 131 |
with col2:
|
| 132 |
st.bar_chart(distribution_df.set_index('Class'))
|
| 133 |
|
|
|
|
| 134 |
st.subheader("Sample ECG Beat")
|
| 135 |
fig, ax = plt.subplots()
|
| 136 |
-
ax.plot(beats[0].flatten())
|
| 137 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 7 |
import os
|
| 8 |
from scipy.signal import resample
|
| 9 |
import matplotlib.pyplot as plt
|
| 10 |
+
import cv2
|
| 11 |
|
| 12 |
# Custom activation functions
|
| 13 |
def sin_activation(x):
|
|
|
|
| 38 |
4: "Unknown"
|
| 39 |
}
|
| 40 |
|
| 41 |
+
# Function to extract beats from record
|
| 42 |
def extract_beats(record, annotation, window_size=257):
|
| 43 |
beats = []
|
| 44 |
r_locs = annotation.sample
|
| 45 |
signal = record.p_signal[:, 0] # Using first channel
|
|
|
|
| 46 |
for r in r_locs:
|
| 47 |
start = max(0, r - window_size//2)
|
| 48 |
end = min(len(signal), r + window_size//2 + 1)
|
|
|
|
| 51 |
beats.append(beat)
|
| 52 |
return np.array(beats)
|
| 53 |
|
| 54 |
+
# Function to detect the last Conv1D layer in the model
|
| 55 |
+
def get_last_conv_layer_name(model):
|
| 56 |
+
last_conv_layer = None
|
| 57 |
+
# Loop in reverse order over layers to find a Conv1D layer
|
| 58 |
+
for layer in reversed(model.layers):
|
| 59 |
+
if isinstance(layer, tf.keras.layers.Conv1D):
|
| 60 |
+
last_conv_layer = layer.name
|
| 61 |
+
break
|
| 62 |
+
if last_conv_layer is None:
|
| 63 |
+
st.error("No Conv1D layer found in the model. Grad-CAM requires a convolution layer.")
|
| 64 |
+
return last_conv_layer
|
| 65 |
+
|
| 66 |
+
# Function to generate Grad-CAM heatmap for a given beat and class index
|
| 67 |
+
def make_gradcam_heatmap(beat, model, conv_layer_name, class_index):
|
| 68 |
+
# Create a model that maps the input beat to the activations of the conv layer and the output predictions
|
| 69 |
+
grad_model = tf.keras.models.Model(
|
| 70 |
+
[model.inputs],
|
| 71 |
+
[model.get_layer(conv_layer_name).output, model.output]
|
| 72 |
+
)
|
| 73 |
+
# Record operations for automatic differentiation
|
| 74 |
+
with tf.GradientTape() as tape:
|
| 75 |
+
# Expand dims to add batch axis: shape (1, 257, 1)
|
| 76 |
+
beat_tensor = tf.expand_dims(beat, axis=0)
|
| 77 |
+
conv_outputs, predictions = grad_model(beat_tensor)
|
| 78 |
+
loss = predictions[:, class_index]
|
| 79 |
+
# Compute gradients of the target class wrt feature map
|
| 80 |
+
grads = tape.gradient(loss, conv_outputs)
|
| 81 |
+
# Global average pooling over the time dimension to get weights
|
| 82 |
+
weights = tf.reduce_mean(grads, axis=1)
|
| 83 |
+
# Compute the weighted sum of feature maps along the channel dimension
|
| 84 |
+
cam = tf.reduce_sum(tf.multiply(weights, conv_outputs), axis=-1)
|
| 85 |
+
cam = tf.squeeze(cam) # Remove batch dimension
|
| 86 |
+
# Apply ReLU to the heatmap to keep only positive influences
|
| 87 |
+
heatmap = tf.maximum(cam, 0)
|
| 88 |
+
# Normalize heatmap to the [0, 1] range
|
| 89 |
+
heatmap_max = tf.reduce_max(heatmap)
|
| 90 |
+
if heatmap_max == 0:
|
| 91 |
+
heatmap = tf.zeros_like(heatmap)
|
| 92 |
+
else:
|
| 93 |
+
heatmap /= heatmap_max
|
| 94 |
+
heatmap = heatmap.numpy()
|
| 95 |
+
# Resize heatmap to match the input beat size (if needed)
|
| 96 |
+
# For 1D, we use cv2.resize with the new shape (length, 1) then flatten
|
| 97 |
+
heatmap = cv2.resize(heatmap, (beat.shape[0], 1)).flatten()
|
| 98 |
+
return heatmap
|
| 99 |
+
|
| 100 |
+
# Streamlit App Layout
|
| 101 |
+
st.title("ECG Arrhythmia Classification with Grad-CAM Visualization")
|
| 102 |
st.write("Upload MIT-BIH record files (.dat, .hea, .atr) or load record 108")
|
| 103 |
record_loaded = False
|
| 104 |
record = None
|
|
|
|
| 127 |
file_path = os.path.join(tmpdir, f.name)
|
| 128 |
with open(file_path, "wb") as f_out:
|
| 129 |
f_out.write(f.getbuffer())
|
|
|
|
| 130 |
base_names = {os.path.splitext(f.name)[0] for f in uploaded_files}
|
| 131 |
common_base = list(base_names)[0]
|
|
|
|
| 132 |
try:
|
| 133 |
record = wfdb.rdrecord(os.path.join(tmpdir, common_base))
|
| 134 |
annotation = wfdb.rdann(os.path.join(tmpdir, common_base), 'atr')
|
|
|
|
| 136 |
except Exception as e:
|
| 137 |
st.error(f"Error reading uploaded files: {str(e)}")
|
| 138 |
|
| 139 |
+
# Process the record if loaded
|
| 140 |
if record_loaded and record is not None and annotation is not None:
|
| 141 |
beats = extract_beats(record, annotation)
|
| 142 |
if len(beats) == 0:
|
| 143 |
st.error("No valid beats found in the record")
|
| 144 |
st.stop()
|
| 145 |
+
|
| 146 |
beats = beats.reshape((-1, 257, 1)).astype(np.float32)
|
| 147 |
predictions = model.predict(beats)
|
| 148 |
predicted_classes = np.argmax(predictions, axis=1)
|
|
|
|
| 157 |
|
| 158 |
# Class Distribution Section
|
| 159 |
st.subheader("Class Distribution")
|
|
|
|
|
|
|
| 160 |
class_indices = list(class_map.keys())
|
| 161 |
class_names = [class_map[i] for i in class_indices]
|
| 162 |
counts = [np.sum(predicted_classes == i) for i in class_indices]
|
|
|
|
|
|
|
| 163 |
distribution_df = pd.DataFrame({
|
| 164 |
"Class": class_names,
|
| 165 |
"Count": counts
|
| 166 |
})
|
|
|
|
|
|
|
| 167 |
col1, col2 = st.columns([1, 2])
|
| 168 |
with col1:
|
| 169 |
st.dataframe(distribution_df.style.format({'Count': '{:,}'}))
|
|
|
|
| 170 |
with col2:
|
| 171 |
st.bar_chart(distribution_df.set_index('Class'))
|
| 172 |
|
| 173 |
+
# Display a Sample ECG Beat
|
| 174 |
st.subheader("Sample ECG Beat")
|
| 175 |
fig, ax = plt.subplots()
|
| 176 |
+
ax.plot(beats[0].flatten(), label="ECG Beat")
|
| 177 |
+
ax.legend()
|
| 178 |
+
st.pyplot(fig)
|
| 179 |
+
|
| 180 |
+
# ---------------- Grad-CAM Visualization Section ----------------
|
| 181 |
+
st.subheader("Grad-CAM Heatmap Visualization for Each Beat")
|
| 182 |
+
st.write("Below are Grad-CAM heatmaps overlaying each beat. The heatmaps show the regions contributing most to the predicted class.")
|
| 183 |
+
|
| 184 |
+
# Automatically detect the last convolutional layer name
|
| 185 |
+
conv_layer_name = get_last_conv_layer_name(model)
|
| 186 |
+
if conv_layer_name is not None:
|
| 187 |
+
st.write(f"Using Conv1D layer: **{conv_layer_name}** for Grad-CAM.")
|
| 188 |
+
|
| 189 |
+
# Optionally, you can limit the number of beats displayed to avoid long processing times.
|
| 190 |
+
# For demonstration, here we process all beats, but you might want to show only the first N beats.
|
| 191 |
+
show_all = st.checkbox("Show Grad-CAM for all beats", value=False)
|
| 192 |
+
if not show_all:
|
| 193 |
+
num_beats_to_show = st.number_input("Number of beats to show:", min_value=1, max_value=len(beats), value=5)
|
| 194 |
+
else:
|
| 195 |
+
num_beats_to_show = len(beats)
|
| 196 |
+
|
| 197 |
+
# Loop over each beat and its prediction to generate Grad-CAM heatmap
|
| 198 |
+
for idx in range(num_beats_to_show):
|
| 199 |
+
beat = beats[idx]
|
| 200 |
+
pred_class = predicted_classes[idx]
|
| 201 |
+
predicted_label = class_map[pred_class]
|
| 202 |
+
# Compute Grad-CAM heatmap for the beat
|
| 203 |
+
heatmap = make_gradcam_heatmap(beat, model, conv_layer_name, pred_class)
|
| 204 |
+
|
| 205 |
+
# Generate visualization figure
|
| 206 |
+
fig, ax = plt.subplots(figsize=(10, 3))
|
| 207 |
+
# Plot the raw ECG beat
|
| 208 |
+
ax.plot(beat.flatten(), color="black", label="ECG Beat")
|
| 209 |
+
# Overlay Grad-CAM heatmap by scatter plotting points with a colormap according to heatmap value
|
| 210 |
+
sc = ax.scatter(np.arange(len(beat)), beat.flatten(), c=heatmap, cmap="jet", s=25)
|
| 211 |
+
ax.set_title(f"Beat {idx} - Predicted: {predicted_label}")
|
| 212 |
+
ax.set_xlabel("Time Index")
|
| 213 |
+
ax.set_ylabel("Amplitude")
|
| 214 |
+
# Add a colorbar to indicate heatmap intensity
|
| 215 |
+
fig.colorbar(sc, ax=ax, label="Grad-CAM Intensity")
|
| 216 |
+
st.pyplot(fig)
|