File size: 11,460 Bytes
6d776bd
 
 
1a02e7a
6d776bd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1a02e7a
6d776bd
 
1a02e7a
 
 
 
 
 
 
6d776bd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1a02e7a
 
 
 
 
6d776bd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
import pandas as pd
import re
from settings import *
# from utils_fcts import print_df_shape # laisser commenté : importé dans utils_fcts ; erreru import circulaire

def clean_cols(myl):
    #  myl = [re.sub(r'\[.*\]', '', x) for x in myl]
    myl = [re.sub(r'[-\[\]\+ \(\)°%]', '_', x.strip()) for x in myl]
    myl = [re.sub(r'_+', '_', x) for x in myl]
    myl = [x.strip("_") for x in myl]
    return myl


def getheadercols(r1, r2, r3):
    # les headers ont un champ de moins que les valeurs
    l1 = r1.split(';') #+ ["missing"]
    l2 = r2.split(';') #+ [""]
    l3 = r3.split(';') #+ [""]
    assert len(l1) == len(l2)
    assert len(l1) == len(l3)
    for i in range(1, len(l1)):
        if l1[i] == '':
            l1[i] = l1[i - 1]
    # enlever caractères spéciaux et unité
    l1 = clean_cols(l1)
    # Concatenate the first three rows to form new column names
    new_columns = [f'{l1[i]}_{l2[i]}_{l3[i]}' for i in range(len(l1))]
    new_columns = [re.sub(r'_+', '_', x) for x in new_columns]
    new_columns[0] = db_timecol
    return clean_cols(new_columns)




def file2tables(file_path):
    error_msg = ""
    ok_msg = ""

    # Détection du type d'entrée : fichier ou chemin de fichier
    if isinstance(file_path, str):  # Si c'est un chemin de fichier
        is_file_obj = False
        f = open(file_path, encoding='latin1')
        filepathlab = file_path

    elif isinstance(file_path, io.StringIO):  # Si c'est un objet fichier
        is_file_obj = True
        f = file_path  # Utiliser l'objet de fichier directement
        filepathlab = "file content"

    else:
        raise ValueError("file_input must be either a file path or an io.StringIO object.")

    print("> START processing " + filepathlab)

    time_pattern = re.compile(r'^\d{2}\.\d{2}\.\d{4} \d{2}:\d{2}$')
    dayP_pattern = re.compile(r'^P\d.+')
    dayI_pattern = re.compile(r'^I\d.+')



    #with open(file_path, encoding='latin1') as f:
    try:
        print(">>> start reading content")
        # Lire les 3 lignes du header
        header_lines = [f.readline().strip().rstrip(";") for _ in range(3)]
        new_columns = getheadercols(header_lines[0], header_lines[1], header_lines[2])
        time_lines_init = [f.readline().strip().rstrip(";").split(";") for _ in
                           range(60 * 24)]
        curr_day = time_lines_init[0][0].split(' ')[0]
        # pas nécessaire de mettre range(3, 3 + 60 * 24)] ! _ est le pointeur
        time_lines = [x for x in time_lines_init if len(x) == len(new_columns) and
                      time_pattern.match(x[0]) and
                      re.compile(curr_day).match(x[0])]
        maxTime_idx = max(i for i, x in enumerate(time_lines_init) if len(x) ==
                          len(new_columns) and time_pattern.match(x[0]))
        dayPstart_idx = maxTime_idx + nHeaderSkip + 1
        # repositionner le pointeur
        f.seek(0)
        for _ in range(dayPstart_idx):
            f.readline()

        dayP_lines_init = [f.readline().strip().rstrip(";").split(";") for _ in
                           range(nRowsDayP)]
        # pas nécessaire dayPstart_idx,(dayPstart_idx+nRowsDayP))
        dayP_lines = [x for x in dayP_lines_init if dayP_pattern.match(x[0])]
        maxDayP_idx = max(i for i, x in enumerate(dayP_lines_init) if
                          dayP_pattern.match(x[0]))

        dayIstart_idx = maxDayP_idx + dayPstart_idx + 1

        # repositionner le pointeur
        f.seek(0)
        for _ in range(dayIstart_idx):
            f.readline()

        dayI_lines_init = [f.readline().strip().rstrip(";").split(";") for _ in
                           range(nRowsDayI)]
        # pas nécessaire range(dayIstart_idx,(dayIstart_idx+nRowsDayI)
        dayI_lines = [x for x in dayI_lines_init if dayI_pattern.match(x[0])]

    finally:
        if not is_file_obj:
            f.close()  # Ne fermer que si nous avons ouvert le fichier
    ###############################################################
    ##################### EXTRAIRE LES DONNÉES TIME
    ###############################################################
    time_data = pd.DataFrame(time_lines)#, columns=new_columns)

    # la 1ère colonne en datetime
    time_data.loc[:, 0] = pd.to_datetime(time_data.iloc[:, 0],
                        format='%d.%m.%Y %H:%M').dt.strftime('%Y-%m-%d %H:%M:%S')

    # Conversion des autres colonnes en numérique (float)
    for col in range(1, time_data.shape[1]):
        time_data.iloc[:, col] = pd.to_numeric(time_data.iloc[:, col], errors='coerce')

    #time_data.to_pickle('time_data_v3.pkl')

    ntime, ncols = time_data.shape
    time_data.columns = new_columns

    if ntime < 60 * 24:
        error_msg += filepathlab + " - WARNING : missing 'time' data (available : " + str(ntime) + "/" + str(60 * 24)
    elif ntime == 60 * 24:
        ok_msg += filepathlab + " - SUCCESS reading 'time' data "
    print(','.join(list(set(time_real_cols + time_txt_cols)-set(time_data.columns))))
    assert time_data.columns.isin(time_real_cols + time_txt_cols).all()
    time_missingcols = list(set(time_real_cols + time_txt_cols) -
                            set(time_data.columns))

    if len(time_missingcols) > 0:
        error_msg += "\n"+ filepathlab + " - WARNING : missing 'time' data columns (" + ','.join(time_missingcols) + ")\n"
    else:
        ok_msg += "\n"+ filepathlab + " - SUCCESS found all 'time' data columns\n"

    date_day = pd.to_datetime(curr_day, format='%d.%m.%Y').strftime('%Y-%m-%d')
    ###############################################################
    ##################### EXTRAIRE LES DONNÉES DAY P
    ###############################################################
    dayP_dataL = pd.DataFrame(dayP_lines)
    dayP_datam = dayP_dataL.melt(id_vars=[0],
                                 value_vars=list(dayP_dataL.columns),
                                 var_name='variable',
                                 value_name='value')
    dayP_datam.iloc[:, 0] = dayP_datam.iloc[:, 0] + "_" + dayP_datam.iloc[:, 1].astype(str)
    dayP_datam.drop(columns=['variable'], inplace=True)
    dayP_data = dayP_datam.T
    dayP_data.columns = dayP_data.iloc[0]
    dayP_data = dayP_data[1:]
    dayP_data.insert(0, day_txt_cols[0], date_day)

    ndayP, ndayPcols = dayP_data.shape
    assert ndayP <= 1
    if ndayP == 0:
        error_msg += "\n"+ filepathlab + " - WARNING : no 'dayP' data found"
    else :
        ok_msg += filepathlab + " - SUCCESS reading 'dayP' data "

    assert ndayPcols <= len(dayP_real_cols) + len(day_txt_cols)

    dayP_missingcols = list(set(dayP_real_cols + day_txt_cols) - set(dayP_data.columns))
    if len(dayP_missingcols) > 0:
        error_msg += "\n"+ filepathlab + " - WARNING : missing 'dayP' data columns (" + \
                     ','.join(dayP_missingcols) + ")\n"
    else:
        ok_msg += "\n"+ filepathlab + " - SUCCESS found all 'dayP' data columns\n"

    ###############################################################
    ##################### EXTRAIRE LES DONNÉES DAY I
    ###############################################################

    dayI_dataL = pd.DataFrame(dayI_lines)

    dayI_datam = dayI_dataL.melt(id_vars=[0],
                                 value_vars=list(dayI_dataL.columns),
                                 var_name='variable',
                                 value_name='value')
    dayI_datam.iloc[:, 0] = dayI_datam.iloc[:, 0] + "_" + dayI_datam.iloc[:, 1].astype(str)
    dayI_datam.drop(columns=['variable'], inplace=True)
    dayI_data = dayI_datam.T
    dayI_data.columns = dayI_data.iloc[0]
    dayI_data = dayI_data[1:]
    dayI_data.insert(0, day_txt_cols[0], date_day)

    # Conversion des autres colonnes en numérique (float)
    for col in range(1, dayI_data.shape[1]):
        dayI_data.iloc[:, col] = pd.to_numeric(dayI_data.iloc[:, col], errors='coerce')


    ndayI, ndayIcols = dayI_data.shape

    assert ndayI <= 1
    if ndayI == 0:
        error_msg += "\n"+ filepathlab + " - WARNING : no 'dayI' data found\n"
    else :
        ok_msg += filepathlab + " - SUCCESS reading 'dayI' data\n"

    assert ndayIcols <= len(dayI_real_cols) + len(day_txt_cols)

    dayI_missingcols = list(set(dayI_real_cols + day_txt_cols) - set(dayI_data.columns))

    if len(dayI_missingcols) > 0:
        error_msg += "\n"+ filepathlab + " - WARNING : missing 'dayI' data columns (" + \
                     ','.join(dayI_missingcols) + ")\n"
    else:
        ok_msg += "\n"+ filepathlab + " - SUCCESS found all 'dayI' data columns\n"

    for col in time_data.columns:
        if col.endswith('_L1'):
            col_l2 = col.replace('_L1', '_L2')
            if col_l2 in time_data.columns:
                new_col = col.replace('_L1', '_L1_L2')
                if not new_col in time_data.columns:
                    time_data[new_col] = time_data[col] + time_data[col_l2]

    return {"time_data" : time_data,
            "dayP_data" : dayP_data,
            "dayI_data" : dayI_data,
            "error" : error_msg,
            "success" : ok_msg}


def create_and_insert(timeData, dayiData, daypData=None):
    # Connexion à la base de données SQLite
    conn = sqlite3.connect(db_file)
    c = conn.cursor()

    # Créer les tables si pas existant
    c.execute('''CREATE TABLE IF NOT EXISTS ''' + dbTime_name + "(" +
              ','.join([x + " TEXT" for x in time_txt_cols]) + "," +
              ','.join([x + " REAL" for x in time_real_cols + time_added_cols]) + '''
        )''')

    if daypData:
        c.execute('''CREATE TABLE IF NOT EXISTS ''' + dbDayP_name + "(" +
                  ','.join([x + " TEXT" for x in day_txt_cols]) + "," +
                  ','.join([x + " REAL" for x in dayP_real_cols]) + '''
              )''')
    c.execute('''CREATE TABLE IF NOT EXISTS ''' + dbDayI_name + "(" +
              ','.join([x + " TEXT" for x in day_txt_cols]) + "," +
              ','.join([x + " REAL" for x in dayI_real_cols]) + '''
          )''')
    conn.commit()

    # Insérer les données dans la base de données
    timeData.to_sql(dbTime_name, conn,
                                        if_exists='append', index=False)
    if daypData:
        daypData.to_sql(dbDayP_name, conn,
                                            if_exists='append', index=False)
    dayiData.to_sql(dbDayI_name, conn,
                                        if_exists='append', index=False)

    # Il est important de fermer la connexion une fois que toutes les opérations sont complétées
    conn.close()

def create_and_concat(timeData, dayiData,currentTimeData,
                                currentDayiData, currentDaypData = None,daypData=None):

    out_txt = ""
    out_txt += "receive time data to add : " + print_df_shape(timeData)
    out_txt += "receive dayI data to add : " + print_df_shape(dayiData)

    ### pas implémnté pour dayp
    if currentTimeData :
        newTimeData = pd.concat([timeData, currentTimeData], axis=0)
    else:
        newTimeData = timeData

    if currentDayiData:
        newDayiData = pd.concat([dayiData, currentDayiData], axis=0)
    else:
        newDayiData = dayiData

    out_txt += "return updated time data : " + print_df_shape(newTimeData)
    out_txt += "return updated dayI data : " + print_df_shape(newDayiData)

    return{"new_dayI_data" : newDayiData,
                    "new_time_data": newTimeData,
           "msg" : out_txt
                    }