Spaces:
Sleeping
Sleeping
File size: 25,511 Bytes
6d776bd 3a4d232 6d776bd 7ef0495 6d776bd 7ef0495 6d776bd 7ef0495 6d776bd 7ef0495 6d776bd 7ef0495 6d776bd 7ef0495 6d776bd 7ef0495 6d776bd 7ef0495 6d776bd 7ef0495 6d776bd 7ef0495 6d776bd 7ef0495 6d776bd 7ef0495 6d776bd 7ef0495 6d776bd 7ef0495 6d776bd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 |
from settings import *
from datetime import timedelta
import numpy as np
import dash_daq as daq
from data_processing_v3 import *
from app_settings import *
def get_var_desc(col, db):
if db == dbTime_name:
if isinstance(col, str) :
desc_txt = "<b>" + col + "</b> : " + \
showcols_settings[col]['description']
elif isinstance(col, list) :
desc_txt = '<br>'.join(["<b>" + selcol + "</b> : " +
showcols_settings[selcol]['description']
for selcol in col])
else:
return None
elif db == dbDayP_name:
if isinstance(col, str):
desc_txt = "<b>" + col + "</b> : " + \
dayPcols_settings[col]['description']
elif isinstance(col, list):
desc_txt = '<br>'.join(["<b>" + selcol + "</b> : " +
dayPcols_settings[selcol]['description']
for selcol in col])
else:
return None
elif db == dbDayI_name:
if isinstance(col, str):
desc_txt = "<b>" + col + "</b> : " + \
dayIcols_settings[col]['description']
elif isinstance(col, list):
desc_txt = '<br>'.join(["<b>" + selcol + "</b> : " +
dayIcols_settings[selcol]['description']
for selcol in col])
else:
return None
else:
return None
return desc_txt
def get_graph_modal(modal_tit, graph_id, closebtn_id, modal_id):
return dbc.Modal(
[
dbc.ModalHeader(modal_tit),
dbc.ModalBody(
dcc.Graph(
id=graph_id # Ce sera le graphique dans la modale
)
),
dbc.ModalFooter(
dbc.Button("Fermer", id=closebtn_id, className="ml-auto")
),
],
id=modal_id,
size="xl",
is_open=False,
)
def printD(d):
return d.strftime('%Y-%m-%d')
def parse_table(contents, filename):
# print(contents)
# print("****")
# print(content_string)
content_type, content_string = contents.split(',')
decoded = base64.b64decode(content_string)
try:
print("Try reading file : " + filename)
file_obj = io.StringIO(decoded.decode(enc))
try:
prepdata_output = file2tables(file_obj)
print(prepdata_output['error'])
print(prepdata_output['success'])
print(":-) data reading success for " + filename)
except:
print("!!! data reading failed for " + filename)
except:
print("!!! reading data failed for " + filename)
return prepdata_output
def parse_contents(contents, filename):
content_type, content_string = contents.split(',')
decoded = base64.b64decode(content_string)
try:
print("Try reading file : " + filename)
file_obj = io.StringIO(decoded.decode(enc))
try:
prepdata_output = file2tables(file_obj)
print(prepdata_output['error'])
print(prepdata_output['success'])
print(":-) data reading success for " + filename)
except:
print("!!! data reading failed for " + filename)
try:
print("... start inserting in DB " + filename)
create_and_insert(timeData=prepdata_output['time_data'],
# daypData=prepdata_output['dayP_data'],
dayiData=prepdata_output['dayI_data'])
print(":-) inserting in DB success for " + filename)
except:
print("!!! inserting in DB failed for " + filename)
print("données ajoutées à la DB")
return html.Div([
'Successfully uploaded and inserted: {}'.format(filename)
])
except Exception as e:
print(e)
return html.Div([
'There was an error processing the file : ' + filename
])
def parse_contents_vConcat(contents, filename, timedb, daydb):
content_type, content_string = contents.split(',')
decoded = base64.b64decode(content_string)
try:
print("Try reading file : " + filename)
file_obj = io.StringIO(decoded.decode(enc))
try:
prepdata_output = file2tables(file_obj)
print(prepdata_output['error'])
print(prepdata_output['success'])
print(":-) data reading success for " + filename)
except:
print("!!! data reading failed for " + filename)
try:
print("... start inserting in DB " + filename)
concat_out = create_and_concat(timeData=prepdata_output['time_data'],
# daypData=prepdata_output['dayP_data'],
dayiData=prepdata_output['dayI_data'],
currentTimeData=timedb,
currentDayData = daydb)
print(":-) inserting in DB success for " + filename)
print("données ajoutées à la DB")
return [concat_out, html.Div([
'Successfully uploaded and inserted: {}'.format(filename)
])]
except Exception as e:
print(e)
print("!!! inserting in DB failed for " + filename)
return html.Div([
'There was an error while inserting the file : ' + filename
])
except Exception as e:
print(e)
return html.Div([
'There was an error processing the file : ' + filename
])
def get_db_dropdown(id) :
return dcc.Dropdown(
id=id,
options=[
{'label': 'Données minutes', 'value': dbTime_name},
# {'label': 'Données journalières P', 'value': dbDayP_name},
{'label': 'Données journalières I', 'value': dbDayI_name}
],
placeholder="Choisissez la table de données"
)
def get_db_text(time_dt, day_dt):
time_dt[db_timecol] = pd.to_datetime(time_dt[db_timecol])
day_dt[db_daycol] = pd.to_datetime(day_dt[db_daycol])
text = ("données minutes : " + str(time_dt.shape[0]) + " x " +
str(time_dt.shape[1]) + " ; du " +
min(time_dt[db_timecol]).strftime('%Y-%m-%d %H:%M:%S') + " au " +
max(time_dt[db_timecol]).strftime('%Y-%m-%d %H:%M:%S') + "\n")
text += (" \n données jours : " + str(day_dt.shape[0]) + " x " +
str(day_dt.shape[1]) + " ; du " +
min(day_dt[db_daycol]).strftime('%Y-%m-%d') + " au " +
max(day_dt[db_daycol]).strftime('%Y-%m-%d'))
return text
def update_layout_cols(selcols):
if len(selcols) > 0:
yaxis_layout['title'] = selcols[0]
if len(selcols) > 1:
yaxis2_layout['title'] = selcols[1]
if len(selcols) > 2:
yaxis3_layout['title'] = selcols[2]
if len(selcols) > 3:
yaxis4_layout['title'] = selcols[3]
def get_range_picker(id,dates):
return dcc.DatePickerRange(
id=id,
# date=None,
display_format='DD.MM.YYYY', ## prend les dates seulement dayP -> assume partt les mm !!
min_date_allowed=min(dates),
max_date_allowed=max(dates),
disabled_days=[pd.to_datetime(date).date() for date in
pd.date_range(start=min(dates),
end=max(dates)).
difference(pd.to_datetime(dates))],
minimum_nights=0,
style={'display': 'none'} # Initialement caché
)
def get_period_dropdown(id):
return dcc.Dropdown(
id=id,
options=[
{'label': 'Jour', 'value': 'stat_day'},
{'label': 'Semaine', 'value': 'stat_week'},
{'label': 'Mois', 'value': 'stat_month'},
{'label': 'Année', 'value': 'stat_year'},
{'label': 'Tout', 'value': 'stat_all'},
{'label': 'Personnalisé', 'value': 'stat_perso'}
],
value='stat_day',
placeholder="Période"
)
def get_plotdesc(col1, col2=None, db = dbTime_name, htmlFormat=True, settingsdict=None):
if not settingsdict:
if db == dbTime_name:
settingsdict = showcols_settings
elif db == dbDayI_name:
settingsdict = dayIcols_settings
elif db == dbDayP_name:
settingsdict = dayPcols_settings
else:
exit(1)
print("col1 in get_plotdesc = " + col1)
col1_txt = settingsdict[col1]['description']
if col2 :
col2_txt = settingsdict[col2]['description']
if htmlFormat:
if col2:
if col1_txt == col2_txt :
fig_desc = "<u>" + col1 + "</u> et <u>" + col2 + "</u> : " + col2_txt
else :
col1_desc = "<u>" + col1 + "</u> : " + col1_txt
col2_desc = "<u>" + col2 + "</u> : " + col2_txt
fig_desc = col1_desc + "<br>" + col2_desc
else :
fig_desc = "<u>" + col1 + "</u> : " + col1_txt
else :
if col2 :
if col1_txt == col2_txt :
fig_desc = col1 + " et " + col2 + " : " + col2_txt
else :
col1_desc = col1 + " : " + col1_txt
col2_desc = col2 + " : " + col2_txt
fig_desc = col1_desc + "\n" + col2_desc
else:
fig_desc = col1 + " : " + col1_txt
return fig_desc
def get_dbTime_2vargraph(df, xcol, col1, col2=None,
dbName = dbTime_name, xaxislab = "",
htmlFormat=True, withQtLines = True, stacked=False,
settingsdict=None, startDate=None, endDate=None):
fig_desc = get_plotdesc(col1, col2, db = dbName,
htmlFormat=htmlFormat,settingsdict=settingsdict)
fig1 = go.Figure()
if stacked:
fig1.add_trace(go.Scatter(x=df[xcol], y=df[col1],
mode='lines', name=col1, stackgroup='one'))
if col2 :
fig1.add_trace(go.Scatter(x=df[xcol], y=df[col2],
mode='lines', name=col2, stackgroup='one'))
else:
fig1.add_trace(go.Scatter(x=df[xcol], y=df[col1],
mode='lines', name=col1))
if col2:
fig1.add_trace(go.Scatter(x=df[xcol], y=df[col2],
mode='lines', name=col2, yaxis='y2'))
if col2:
fig1.update_layout(
# title=f'{col1} et {col2}',
title=f'<b>{col1}</b> et <b>{col2}</b>',
title_font=dict(size=20),
xaxis_title=xaxislab,
yaxis_title=col1,
yaxis2=dict(
title=col2,
overlaying='y',
side='right'
))
qtcols = {col1 : "limegreen", col2 : "darkgreen"}
all_cols = [col1,col2]
else:
fig1.update_layout(
# title=f'{col1} et {col2}',
title=f'<b>{col1}</b>',
title_font=dict(size=20),
xaxis_title=xaxislab,
yaxis_title=col1)
qtcols = {col1: "limegreen"}
all_cols=[col1]
if withQtLines:
for icol in all_cols :
q1 = df[icol].quantile(0.1)
q9 = df[icol].quantile(0.9)
# fig1.add_hline(y=q1, line=dict(color='green', width=2, dash='dash'), name='0.1-Qt ' +icol)
# fig1.add_hline(y=q9, line=dict(color='green', width=2, dash='dash'), name='0.9-Qt ' + icol)
fig1.add_trace(go.Scatter(
x=[df[xcol].min(), df[xcol].max()],
y=[q1, q1],
mode="lines",
line=dict(color=qtcols[icol], width=2, dash='dash'),
name=f'0.1-0.9 Qt {icol}',
showlegend=True
))
fig1.add_trace(go.Scatter(
x=[df[xcol].min(), df[xcol].max()],
y=[q9, q9],
mode="lines",
line=dict(color=qtcols[icol], width=2, dash='dash'),
name=f'0.9-Qt {icol}',
showlegend=False
))
if endDate and startDate:
fig1.update_xaxes(range=[startDate, endDate])
return [fig1, fig_desc]
# Fonction pour trouver les points d'intersection exacts
def find_intersections(df, col1, col2):
intersections = []
for i in range(len(df) - 1):
if (df[col1][i] - df[col2][i]) * (df[col1][i + 1] - df[col2][i + 1]) < 0:
x1, x2 = df.index[i], df.index[i + 1]
y1_1, y2_1 = df[col1][i], df[col1][i + 1]
y1_2, y2_2 = df[col2][i], df[col2][i + 1]
# Calcul de l'intersection linéaire
slope_1 = (y2_1 - y1_1) / (x2 - x1).total_seconds()
slope_2 = (y2_2 - y1_2) / (x2 - x1).total_seconds()
intersect_seconds = (y1_2 - y1_1) / (slope_1 - slope_2)
intersect_day = x1 + pd.Timedelta(seconds=intersect_seconds)
intersect_value = y1_1 + slope_1 * intersect_seconds
intersections.append((intersect_day, intersect_value))
return intersections
def get_column_lab(col):
if col in dayIcols_settings:
lab = dayIcols_settings[col]['lab']
elif col in showcols_settings:
lab = showcols_settings[col]['lab']
else :
lab=col
return lab
def get_intersectLines_plot(data, indexcol, col1, col2, startDate=None, endDate=None, xaxislab=""):
# Trouver les points d'intersection
intersections = find_intersections(data, col1=col1, col2=col2)
# Ajouter les points d'intersection aux données
intersect_df = pd.DataFrame(intersections, columns=[indexcol, col1])
intersect_df[col2] = intersect_df[col1]
intersect_df.set_index(indexcol, inplace=True)
df = pd.concat([data, intersect_df]).sort_values(indexcol)
col1lab = get_column_lab(col1)
col1tit = "<b>" + col1lab + "</b> (" + col1 + ")"
col2lab = get_column_lab(col2)
col2tit = "<b>" + col2lab + "</b> (" + col2 + ")"
# Créer la figure Plotly
fig = go.Figure()
# Tracer les lignes
fig.add_trace(go.Scatter(x=df.index, y=df[col1],
mode='lines', name=col1lab, line=dict(color='blue')))
fig.add_trace(go.Scatter(x=df.index, y=df[col2],
mode='lines', name=col2lab, line=dict(color='red')))
fig.add_trace(go.Scatter(
x=df.index,
y=df[col1],
fill=None,
mode='lines',
line=dict(color='rgba(0,0,0,0)'),
showlegend=False
))
fig.add_trace(go.Scatter(
x=df.index,
y=np.where(df[col1] > df[col2], df[col2], df[col1]),
fill='tonexty',
mode='none',
line=dict(color='rgba(0,0,0,0)'),
fillcolor='rgba(0,0,255,0.3)',
showlegend=False
))
# Zone rouge où I7008_1 est au-dessus
fig.add_trace(go.Scatter(
x=df.index,
y=df[col2],
fill=None,
mode='lines',
line=dict(color='rgba(0,0,0,0)'),
showlegend=False
))
fig.add_trace(go.Scatter(
x=df.index,
y=np.where(df[col1] <= df[col2], df[col1], df[col2]),
fill='tonexty',
mode='none',
line=dict(color='rgba(0,0,0,0)'),
fillcolor='rgba(255,0,0,0.3)',
showlegend=False
))
fig.update_layout(
title=f'{col1tit} et {col2tit}',#f'<b>{col1}</b> et <b>{col2}</b>',
xaxis_title=xaxislab,#indexcol,
yaxis_title='Valeur',
showlegend=True
)
if endDate and startDate:
fig.update_xaxes(range=[startDate, endDate])
return fig
def get_stacked_cmpgraph(initdf, xcol, col1, col2,
dbName = dbTime_name,
commoncol ='équilibre',
xaxislab = "",
htmlFormat=True,
settingsdict=None,
startDate=None, endDate=None):
df = initdf.copy()
df[commoncol] = np.minimum(df[col1], df[col2])
# Mise à jour des colonnes I7007_1 et I7008_1
df[col1] = df[col1] - df[commoncol]
df[col2] = df[col2] - df[commoncol]
fig_desc = get_plotdesc(col1, col2, db = dbName,
htmlFormat=htmlFormat,settingsdict=settingsdict)
fig1 = go.Figure()
# Ajouter les barres pour 'commoncol'
fig1.add_trace(go.Bar(x=df[xcol], y=df[commoncol],
name=get_column_lab(commoncol), marker=dict(color='grey')))
# Ajouter les barres pour col1, empilées au-dessus de commoncol
fig1.add_trace(go.Bar(x=df[xcol], y=df[col1],
name=get_column_lab(col1), base=df[commoncol], marker=dict(color='blue')))
# Ajouter les barres pour col2, empilées au-dessus de commoncol
fig1.add_trace(go.Bar(x=df[xcol], y=df[col2],
name=get_column_lab(col2), base=df[commoncol], marker=dict(color='red')))
fig1.update_layout(
barmode='stack' ,
title=f'<b>{col1}</b> et <b>{col2}</b>',
title_font=dict(size=20),
xaxis_title=xaxislab,#xcol,
yaxis_title=col1,
yaxis2=dict(
title=col2,
overlaying='y',
side='right'
))
if startDate and endDate:
fig1.update_xaxes(range=[startDate, endDate])
return [fig1, fig_desc]
#
# def get_modal_dashboard(id_mainDiv, id_childDiv, id_closeBtn, id_graph):
# return html.Div(
# id=id_mainDiv,
# style={"display": "none"}, # Initialement caché
# children=[
# html.Div(
# id=id_childDiv,
# children=[
# html.Button("Fermer", id=id_closeBtn ,n_clicks=0),
# dcc.Graph(id=id_graph,config= {
# 'scrollZoom': True # Activer le zoom avec la molette
# })
# ],
# style={
# "position": "fixed",
# "top": "50%",
# "left": "50%",
# "transform": "translate(-50%, -50%)",
# "background-color": "white",
# "padding": "20px",
# "box-shadow": "0px 0px 10px rgba(0, 0, 0, 0.5)",
# "z-index": "1000",
# "width": "80%",
# "height": "80%",
# "overflow": "auto"
# }
# ),
# html.Div(
# style={
# "position": "fixed",
# "top": "0",
# "left": "0",
# "width": "100%",
# "height": "100%",
# "background-color": "rgba(0, 0, 0, 0.5)",
# "z-index": "999"
# }
# )
# ]
# )
#
# def generate_header_row(timestamp):
# return html.Div(
# className="row metric-row header-row",
# children=[
# html.Div(
# className="one column metric-row-header",
# children=html.Div("Mesures"),
# ),
# html.Div(
# className="two columns metric-row-header", # Élargi pour inclure le pourcentage
# children=html.Div("# " + timestamp + " avec valeurs"),
# ),
# html.Div(
# className="two columns metric-row-header", # Élargi pour inclure le pourcentage
# children=html.Div("# " + timestamp + " sans données"),
# ),
# html.Div(
# className="four columns metric-row-header",
# children=html.Div("Tendance"),
# ),
# html.Div(
# className="four columns metric-row-header",
# children=html.Div("Dispo. des données"),
# ),
# ],
# )
#
#
# def generate_summary_row(id_suffix, column_name, minutes_with_data,
# minutes_with_missing_data, sparkline_data,
# time_data, btn_type):
# ooc_graph_id = f"ooc_graph_{id_suffix}"
#
# total_minutes = minutes_with_data + minutes_with_missing_data
# percentage_with_data = (minutes_with_data / total_minutes) * 100
# percentage_missing_data = (minutes_with_missing_data / total_minutes) * 100
#
# minutes_with_data_text = f"{minutes_with_data} ({percentage_with_data:.0f}%)"
# minutes_with_missing_data_text = f"{minutes_with_missing_data} ({percentage_missing_data:.0f}%)"
#
# sparkline_figure = go.Figure(
# {
# "data": [
# {
# "x": time_data,
# "y": sparkline_data,
# "mode": "lines",
# "line": {"color": "#f4d44d"},
# "name": column_name,
# }
# ],
# "layout": {
# "margin": dict(l=0, r=0, t=0, b=0, pad=0),
# "xaxis": dict(showline=False, showgrid=False,
# zeroline=False, showticklabels=False),
# "yaxis": dict(showline=False, showgrid=False,
# zeroline=False, showticklabels=False),
# "paper_bgcolor": "rgba(0,0,0,0)",
# "plot_bgcolor": "rgba(0,0,0,0)",
# },
# }
# )
#
# return html.Div(
# className="row metric-row",
# children=[
# html.Div(
# className="one column metric-row-button-text",
# children=html.Button(
# children=column_name,
# id={'type': btn_type, 'index': id_suffix},
# n_clicks=0,
# ),
#
# ),
# html.Div(
# className="two columns",
# children=html.Div(
# children=minutes_with_data_text,
# ),
# ),
# html.Div(
# className="two columns",
# children=html.Div(
# children=minutes_with_missing_data_text,
# ),
# ),
# html.Div(
# className="four columns",
# children=dcc.Graph(
# id=f"sparkline_{id_suffix}",
# figure=sparkline_figure,
# style={"width": "100%", "height": "50px"},
# config={"staticPlot": True, 'scrollZoom': True ,
# "displayModeBar": False},
# ),
# ),
# html.Div(
# className="four columns",
# children=daq.GraduatedBar(
# id=ooc_graph_id,
# color={
# "ranges": {
# "#f45060": [0, 3],
# "#f4d44d": [3, 7],
# "#13aa13": [7, 10],
# }
# },
# showCurrentValue=False,
# max=10,
# value=percentage_with_data / 10,
# size=250,
# ),
# ),
# ],
# )
#
# #
#
# # Fonction pour diviser une liste en N parties égales
# def split_list(lst, n):
# k, m = divmod(len(lst), n)
# return [lst[i * k + min(i, m):(i + 1) * k + min(i + 1, m)] for i in range(n)]
#
# # Organiser les données en sections avec trois colonnes
# def create_section(title, data):
# items = [html.P([html.U(col), f": {mean:.2f}"]) for col, mean in data.items()]
# columns = split_list(items, 3)
# return html.Div([
# html.H5(title, style={'font-weight': 'bold'}),
# html.Div([html.Div(col, className='col') for col in columns], className='row')
# ])
#
###### FONCTIONS POUR LA PAGE DE ACUEIL
def get_navbtn(id, lab):
return html.Div(
dbc.Button([
html.I(className="fas fa-paper-plane"),
" " + lab
],
id=id,
**navbtn_style),
className="d-flex justify-content-center"
)
def get_nav_link(id, lab):
return html.A(lab, id=id, href="#",
style={"color": "#2507cf", "cursor": "pointer"})
def get_startrange_date_vLatest(timecol, period):
endd = max(pd.to_datetime(timecol).dt.date)
if period == 'stat_week':
startd =endd - timedelta(days=7)
elif period == "stat_day":
startd =endd
elif period == 'stat_month':
startd =endd - timedelta(days=30)
elif period == 'stat_year':
startd =endd - timedelta(days=365)
elif period == 'stat_all':
startd = min(pd.to_datetime(timecol).dt.date)
else :
return exit(1)
return [startd, endd]
#
def print_df_shape(df):
if df :
return str(df.shape[0]) + " x " + str(df.shape[1])
else :
return "data frame is None"
|