import gradio as gr import os import json import requests #Streaming endpoint API_URL = "https://api.openai.com/v1/chat/completions" #os.getenv("API_URL") + "/generate_stream" #Testing with my Open AI Key OPENAI_API_KEY = os.getenv("OPENAI_API_KEY") system_message = """ Object: najimino Coaching & Mental Care Program Sub-objects: Problem-solving, communication, mental care, tone adjustment Knowledge & abilities: Evidence-Based Coaching & Mental Care Approaches, coaching, psychology, problem-solving strategies, conversation techniques Managing Object: najimino Coach & Mental Care Specialist Knowledge & abilities: Coaching, client management, communication, understanding needs, program adjustment, mental care principles, tone adjustment, questioning techniques (limiting to 1-2 questions), error handling, facilitating small steps The program addresses clients' needs with various evidence-based methods, guided by the specialist. It focuses on communication, problem-solving, mental care, and adjusting tone to match the client's. The specialist is skilled in client management, understanding needs, adjusting the program, and applying mental care principles. They limit questions to 1-2 at a time, handle errors by adjusting the prompts, and facilitate small steps towards clients' goals through skillful conversation. The specialist continuously adapts to the client's language and provides ongoing support. When you understand, return OK and act as najimino coach. """ # def predict(inputs, top_p, temperature, openai_api_key, chat_counter, chatbot=[], history=[]): #repetition_penalty, top_k def predict(inputs, top_p, temperature, chat_counter, chatbot=[], history=[]): #repetition_penalty, top_k payload = { "model": "gpt-3.5-turbo", "messages": [ {"role": "system", "content": f"{system_message}"}, {"role": "assistant", "content": "ok."}, {"role": "user", "content": f"{inputs}"}, ], "temperature" : 1.0, "top_p":1.0, "n" : 1, "stream": True, "presence_penalty":0, "frequency_penalty":0, } headers = { "Content-Type": "application/json", "Authorization": f"Bearer {OPENAI_API_KEY}" } print(f"chat_counter - {chat_counter}") if chat_counter != 0 : messages= [] temp0 = {} temp0["role"] = "system" temp0["content"] = system_message messages= [{"role": "system", "content": f"{system_message}"}] for data in chatbot: temp1 = {} temp1["role"] = "user" temp1["content"] = data[0] temp2 = {} temp2["role"] = "assistant" temp2["content"] = data[1] messages.append(temp1) messages.append(temp2) temp3 = {} temp3["role"] = "user" temp3["content"] = inputs messages.append(temp3) #messages payload = { "model": "gpt-3.5-turbo", "messages": messages, #[{"role": "user", "content": f"{inputs}"}], "max_tokens": 400, # inf "temperature" : temperature, #1.0, "top_p": top_p, #1.0, "n" : 1, "stream": True, "presence_penalty":0, "frequency_penalty":0, } chat_counter+=1 history.append(inputs) print(f"payload is - {payload}") # make a POST request to the API endpoint using the requests.post method, passing in stream=True response = requests.post(API_URL, headers=headers, json=payload, stream=True) #response = requests.post(API_URL, headers=headers, json=payload, stream=True) token_counter = 0 partial_words = "" counter=0 for chunk in response.iter_lines(): if counter == 0: counter+=1 continue counter+=1 # check whether each line is non-empty if chunk : # decode each line as response data is in bytes if len(json.loads(chunk.decode()[6:])['choices'][0]["delta"]) == 0: break #print(json.loads(chunk.decode()[6:])['choices'][0]["delta"]["content"]) partial_words = partial_words + json.loads(chunk.decode()[6:])['choices'][0]["delta"]["content"] if token_counter == 0: history.append(" " + partial_words) else: history[-1] = partial_words chat = [(history[i], history[i + 1]) for i in range(0, len(history) - 1, 2) ] # convert to tuples of list token_counter+=1 yield chat, history, chat_counter # resembles {chatbot: chat, state: history} def reset_textbox(): return gr.update(value='') title = """