File size: 21,506 Bytes
917851d
 
 
 
 
 
 
 
 
 
59876db
9a2372b
59876db
917851d
 
 
 
 
 
9a2372b
 
917851d
 
 
 
df52446
 
917851d
f19a595
 
 
59876db
f19a595
9a2372b
 
917851d
9a2372b
 
 
df52446
9a2372b
917851d
9a2372b
 
 
 
 
 
 
d9cbe91
df52446
59876db
 
df52446
59876db
 
df52446
59876db
df52446
59876db
df52446
 
 
 
9a2372b
59876db
df52446
 
 
 
 
 
 
 
917851d
df52446
 
 
 
7632937
 
df52446
 
7632937
df52446
9a2372b
59876db
 
 
 
7632937
 
59876db
 
9a2372b
 
917851d
d9cbe91
 
 
 
917851d
 
7632937
917851d
 
 
 
7632937
9a2372b
 
 
 
7632937
9a2372b
 
 
 
7632937
9a2372b
 
 
 
 
 
 
 
 
 
 
7632937
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9a2372b
 
 
7632937
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9a2372b
 
d9cbe91
9a2372b
 
 
 
 
 
 
 
d9cbe91
9a2372b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7632937
9a2372b
 
 
 
917851d
 
9a2372b
917851d
 
9a2372b
59876db
917851d
59876db
df52446
c631eaa
 
9a2372b
 
 
 
df52446
 
d9cbe91
df52446
9a2372b
d9cbe91
9a2372b
 
df52446
9a2372b
 
59876db
df52446
d9cbe91
917851d
 
 
9a2372b
 
 
 
 
917851d
df52446
9a2372b
 
 
df52446
917851d
 
 
df52446
 
917851d
 
 
 
 
 
d9cbe91
59876db
 
 
 
 
 
917851d
9a2372b
 
917851d
9a2372b
 
 
 
 
917851d
9a2372b
 
917851d
9a2372b
 
 
 
 
 
 
 
 
d9cbe91
9a2372b
 
d9cbe91
 
 
9a2372b
 
 
 
 
 
 
d9cbe91
 
 
 
9a2372b
 
 
 
 
 
 
 
 
d9cbe91
 
 
 
917851d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
59876db
 
917851d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
59876db
917851d
 
 
 
 
 
 
59876db
 
 
 
917851d
 
 
 
 
 
 
 
 
 
df52446
 
 
 
 
 
917851d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7632937
 
917851d
 
d9cbe91
dc9caf6
 
 
d9cbe91
917851d
 
 
 
 
 
 
 
 
d9cbe91
 
917851d
be2d90c
917851d
df52446
917851d
 
279de8e
917851d
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
import gradio as gr
import openai
import sys
import os
import json
import threading
import time
import requests
import argparse
import markdown2
import uuid
import traceback
from pathlib import Path

from dotenv import load_dotenv
from IPython.display import Image
from moviepy.editor import VideoFileClip, concatenate_videoclips, ImageClip
from moviepy.video.fx.all import fadein, fadeout
from PIL import Image as PIL_Image
from pydub import AudioSegment
from moviepy.editor import VideoFileClip, AudioFileClip

from jinja2 import Template

ENV = os.getenv("ENV")
# MODEL = "gpt-3.5-turbo"
MODEL = "gpt-4"

load_dotenv()
openai.api_key = os.getenv('OPENAI_API_KEY')
REPLICATE_API_TOKEN_LIST = os.getenv("REPLICATE_API_TOKEN_LIST").split(',')
NUMBER_OF_SCENES = os.getenv("NUMBER_OF_SCENES")

import replicate
from replicate.client import Client

class Replicate:
    def __init__(self, id, client: Client, args, index=None):
        self.id = id
        self.client = client
        self.args = args
        self.index = index
        self.prompt = ""
        self.file_path_format = ""
        self.REPLICATE_MODEL_PATH = ""
        self.REPLICATE_MODEL_VERSION = ""
        self.input={}
        self.response = None
        self.prediction_id = None
        self.lock = threading.Lock()

    def run_replicate(self, retries=0):
        try:
            # self.client.api_token = self.client.api_token_controller.get_next_token()
            start_time = time.time()

            # os.environ["REPLICATE_API_TOKEN"] = self.client.api_token
            #tokenの最初の10文字だけ出力
            print(f"Thread {self.index} token: {self.client.api_token[:10]}")
            
            model = self.client.models.get(self.REPLICATE_MODEL_PATH)
            version = model.versions.get(self.REPLICATE_MODEL_VERSION)
            self.prediction = self.client.predictions.create(
                version=version,
                input=self.input
            )
            
            self.prediction_id = self.prediction.id

            # print(f"Thread {self.index} token: {self.client.api_token[:10]} prediction: {self.prediction}")
            print(f"Thread {self.index} token: {self.client.api_token[:10]} prediction.status: {self.prediction.status}")

            self.prediction.reload()
            print(f"Thread {self.index} token: {self.client.api_token[:10]} prediction.status: {self.prediction.status}")

            self.prediction.wait()

            print(f"Thread {self.index} token: {self.client.api_token[:10]} prediction.status: {self.prediction.status}")
            if self.prediction.status == "succeeded":
                self.response = self.prediction.output
                self.response = self.response
                print(f"Thread {self.index} token: {self.client.api_token[:10]} prediction.output: {self.prediction.output}")
            else:
                self.response = None
            
            self.file_path = self.file_path_format.format(id=self.id, class_name=self.__class__.__name__, index=self.index, prediction_id=self.prediction_id)
            end_time = time.time()
            duration = end_time - start_time

            self.print_thread_info(start_time, end_time, duration)
            
            return self.response
        except Exception as e:
            print(f"Error in thread {self.index}: {e}")
            print(traceback.format_exc())
            
    def download_and_save(self, url, file_path):
        with self.lock:  # ロックを取得
            response = requests.get(url)
            with open(file_path, "wb") as f:
                f.write(response.content)

    def print_thread_info(self, start_time, end_time, duration):
        print(f"Thread {self.index} response: {self.response}")
        print(f"Thread {self.index} start time: {start_time}")
        print(f"Thread {self.index} end time: {end_time}")
        print(f"Thread {self.index} duration: {duration}")

class LucatacoAnimateDiff(Replicate):

    def __init__(self, id, client: Client, args, scene, index=None):
        super().__init__(id, client, args, index)
        self.REPLICATE_MODEL_PATH = "lucataco/animate-diff"
        self.REPLICATE_MODEL_VERSION = "beecf59c4aee8d81bf04f0381033dfa10dc16e845b4ae00d281e2fa377e48a9f"
        self.scene = scene
        self.prompt = "masterpiece, awards, best quality, dramatic-lighting, "
        self.prompt = self.prompt + scene.get("visual_prompt_in_en")
        self.prompt = self.prompt + ", cinematic-angles-" + scene.get("cinematic_angles") 
        self.nagative_prompt = "badhandv4, easynegative, ng_deepnegative_v1_75t, verybadimagenegative_v1.3, bad-artist, bad_prompt_version2-neg, nsfw, deformed iris, deformed pupils, mutated hands and fingers, deformed, distorted, disfigured, poorly drawn, bad anatomy, wrong anatomy, extra limb, missing limb, floating limbs, disconnected limbs, mutation, mutated, ugly, disgusting, amputation"
        self.file_path_format = "assets/{id}/{class_name}_thread_{index}_request_{prediction_id}.mp4"
        self.file_path = None
        self.input={
            "motion_module": "mm_sd_v14", 
            "prompt": self.prompt,
            "n_prompt": self.nagative_prompt,
            "seed": 0, # random
            }

    def run_replicate(self, retries=0):
        self.response = super().run_replicate()
        self.download_and_save(url=self.response, file_path=self.file_path)
        self.file_path = self.file_path_format.format(id=self.id, class_name=self.__class__.__name__, index=self.index, prediction_id=self.prediction_id)
        return self.response

class ZsxkibAnimateDiff(Replicate):

    def __init__(self, id, client: Client, args, scene, index=None):
        super().__init__(id, client, args, index)
        self.REPLICATE_MODEL_PATH = "zsxkib/animate-diff"
        self.REPLICATE_MODEL_VERSION = "269a616c8b0c2bbc12fc15fd51bb202b11e94ff0f7786c026aa905305c4ed9fb"
        self.scene = scene
        self.prompt = "masterpiece, awards, best quality, dramatic-lighting, "
        self.prompt = self.prompt + scene.get("visual_prompt_in_en")
        self.prompt = self.prompt + ", cinematic-angles-" + scene.get("cinematic_angles") 
        self.nagative_prompt = "badhandv4, easynegative, ng_deepnegative_v1_75t, verybadimagenegative_v1.3, bad-artist, bad_prompt_version2-neg, nsfw, deformed iris, deformed pupils, mutated hands and fingers, deformed, distorted, disfigured, poorly drawn, bad anatomy, wrong anatomy, extra limb, missing limb, floating limbs, disconnected limbs, mutation, mutated, ugly, disgusting, amputation"
        self.file_path_format = "assets/{id}/{class_name}_thread_{index}_request_{prediction_id}.mp4"
        self.file_path = None
        self.input={
            "prompt": self.prompt,
            "negative_prompt": self.nagative_prompt,
            "base_model": "toonyou_beta3", #Allowed values:realisticVisionV20_v20, lyriel_v16, majicmixRealistic_v5Preview, rcnzCartoon3d_v10, toonyou_beta3
            }

    def run_replicate(self, retries=0):
        self.response = super().run_replicate()
        self.video = self.response[0]
        self.download_and_save(url=self.video, file_path=self.file_path)
        self.file_path = self.file_path_format.format(id=self.id, class_name=self.__class__.__name__, index=self.index, prediction_id=self.prediction_id)
        return self.response

class Interpolator(Replicate):

    def __init__(self, id, client: Client, args, video, index=None):
        super().__init__(id, client, args, index)
        self.REPLICATE_MODEL_PATH = "zsxkib/st-mfnet"
        self.REPLICATE_MODEL_VERSION = "faa7693430b0a4ac95d1b8e25165673c1d7a7263537a7c4bb9be82a3e2d130fb"
        self.file_path_format = "assets/{id}/{class_name}_thread_{index}_request_{prediction_id}.mp4"
        self.file_path = None
        self.input={
            "mp4": video, 
            "framerate_multiplier": 4,
            "keep_original_duration": False,
            "custom_fps": 24,
            }

    def run_replicate(self, retries=0):
        self.response = super().run_replicate()
        self.download_and_save(url=list(self.response)[-1], file_path=self.file_path)
        self.file_path = self.file_path_format.format(id=self.id, class_name=self.__class__.__name__, index=self.index, prediction_id=self.prediction_id)
        return self.response

class Video():

    def __init__(self, id, client: Client, args, scene, index=None):
        self.client = client
        self.index = index
        # self.animatediff = LucatacoAnimateDiff(id, client, args, scene, index)
        self.animatediff = ZsxkibAnimateDiff(id, client, args, scene, index)
        self.prompt = self.animatediff.prompt
        self.interpolator = None

    def run_replicate(self, retries=0):
        self.animatediff.run_replicate(retries)
        self.interpolator = Interpolator(self.animatediff.id, self.animatediff.client, self.animatediff.args, self.animatediff.video, self.animatediff.index)
        self.response = self.interpolator.run_replicate(retries)
        self.file_path = self.interpolator.file_path
        return self.response

class Music(Replicate):

    def __init__(self, id, client: Client, args, duration):
        super().__init__(id, client, args)
        self.REPLICATE_MODEL_PATH = "facebookresearch/musicgen"
        self.REPLICATE_MODEL_VERSION = "f8578df960c345df7bc1f85dd152c5ae0b57ce45a6fc09511c467a62ad820ba3",
        self.prompt = "innovative, exceptional, captivating, " \
            + args.get("bgm_prompt_in_en")
        
        self.file_path_format = "assets/{id}/{class_name}_{index}_request_{prediction_id}.mp3"
        self.file_path = None
        self.duration = duration
        self.input = {
            "model_version": "large", 
            "prompt": self.prompt,
            "duration": self.duration,
            "output_format": "mp3",
            "seed": -1, # random
            }

    def run_replicate(self, retries=0):
        
        start_time = time.time()
        print(f"Thread {self.index} token: {self.client.api_token[:10]}")
        
        os.environ['REPLICATE_API_TOKEN'] = self.client.api_token
        output = replicate.run(
            "facebookresearch/musicgen:7a76a8258b23fae65c5a22debb8841d1d7e816b75c2f24218cd2bd8573787906",
            input={
                "model_version": "large",
                # "prompt": "The sound of samurai's footsteps marching across the field, the echo of the mountain, the fierce battle sound, and finally the triumphant fanfare as they claim victory."
                "prompt": self.prompt,
                "duration": self.duration,
                "output_format": "mp3",
                "seed": -1, # random
                }
        )
        print(output)
        self.response = output
        
        self.file_path = self.file_path_format.format(id=self.id, class_name=self.__class__.__name__, index=self.index, prediction_id=self.prediction_id)
        end_time = time.time()
        duration = end_time - start_time
        self.download_and_save(url=self.response, file_path=self.file_path)
        self.print_thread_info(start_time, end_time, duration)
        
        return self.response

class ThreadController:
    def __init__(self, args):
        self.id = uuid.uuid4()
        self.args = args
        scenes = args.get("scenes")
        self.music = None
        self.videos = []
        self.threads = []
        self.lock = threading.Lock()
        self.replicate_client_list = {}
        # 2.1秒 * シーン数 * APIトークン数 ただし30秒を超える場合は30秒にする
        self.duration = int(2.1 * len(scenes) * len(REPLICATE_API_TOKEN_LIST)) if int(2.1 * len(scenes) * len(REPLICATE_API_TOKEN_LIST)) < 30 else 30
        
        os.makedirs(f"assets/{self.id}", exist_ok=True)
        
        for token_index, token in enumerate(REPLICATE_API_TOKEN_LIST):
            client = Client()
            client.api_token = token
            client.api_token_index = 0
            self.replicate_client_list[token] = client
            if token_index == 0:
                self.music = Music(self.id, client, args, self.duration)
                self.music.duration = self.duration

            for index, scene in enumerate(scenes):
                token = REPLICATE_API_TOKEN_LIST[token_index]
                video = Video(self.id, client, args, scene, index)
                self.videos.append(video)
            
            client.api_token_index = (token_index + 1) % len(REPLICATE_API_TOKEN_LIST)

    def run_threads(self):

        thread = threading.Thread(target=self.music.run_replicate)
        self.threads.append(thread)
        thread.start()
        token = self.music.client.api_token
        
        for video in self.videos:
            if token is not None and video.client.api_token != token:
                # tokenが異なる場合、4秒待ってから次を実行
                print(f"Thread {video.index} token changed. Waiting 4 seconds.")
                time.sleep(4)
            
            thread = threading.Thread(target=video.run_replicate)
            self.threads.append(thread)
            thread.start()
            token = video.client.api_token
            # time.sleep(5)

        for thread in self.threads:
            thread.join()

    def merge_videos(self):
        clips = []
        for video in sorted(self.videos, key=lambda x: x.index):
            video_path = Path(video.file_path)
            if video_path.exists():
                clips.append(VideoFileClip(video.file_path))
            else:
                print(f"Error: Video file {video.file_path} could not be found! Skipping this file.")
                # 他のログ出力方法も使用可能、例: loggingモジュール

        output_path = f"assets/{self.id}/concatenated_video_{self.id}.mp4"

        final_clip = concatenate_videoclips(clips)
        final_clip.write_videofile(output_path, codec='libx264', fps=24)
        
        # Load the video file using MoviePy
        video_clip = VideoFileClip(output_path)
        video_duration = video_clip.duration

        # Re-loading the audio file using pydub
        audio_segment = AudioSegment.from_mp3(self.music.file_path)

        # Calculating the number of loops needed to match the video duration
        num_loops = int(video_duration * 1000) // len(audio_segment) + 1

        # Creating an audio segment that has the same duration as the video by looping the original audio
        final_audio_segment = audio_segment * num_loops

        # Trimming the final audio segment to match the video duration exactly
        final_audio_segment = final_audio_segment[:int(video_duration * 1000)]

        import tempfile

        # Saving the final audio as a temporary WAV file
        with tempfile.NamedTemporaryFile(suffix='.mp3', delete=False) as f:
            temp_audio_path = f.name
            final_audio_segment.export(temp_audio_path, format="mp3")

        # Loading the temporary audio file as a MoviePy AudioFileClip
        final_audio_clip = AudioFileClip(temp_audio_path)

        # Setting the audio to the video
        final_video_clip = video_clip.set_audio(final_audio_clip)

        # Saving the final video with audio to a temporary file
        with tempfile.NamedTemporaryFile(suffix='.mp4', delete=False) as f:
            output_path_with_audio_fixed = f.name
            final_video_clip.write_videofile(output_path_with_audio_fixed, codec="libx264", audio_codec="aac")


        os.makedirs(f"videos/{self.id}/", exist_ok=True)
        output_path = f"videos/{self.id}/final_concatenated_video_{self.id}.mp4"

        # final_clip.write_videofile(output_path, codec='libx264', fps=24)
        
        import shutil
        shutil.move(output_path_with_audio_fixed, output_path)
        
        # Delete the temporary files
        os.remove(temp_audio_path)
        shutil.rmtree(f"assets/{self.id}/")

        return output_path

    def print_prompts(self):
        for video in self.videos:
            print(f"Thread {video.index} prompt: {video.prompt}")

def main(args):
    thread_controller = ThreadController(args)
    thread_controller.run_threads()
    merged_video_path = thread_controller.merge_videos()

    thread_controller.print_prompts()

    return merged_video_path

def load_prompts(file_path):
    with open(file_path, "r") as f:
        prompts = f.read().splitlines()
    return prompts

def get_filetext(filename):
    with open(filename, "r") as file:
        filetext = file.read()
    return filetext

def get_functions_from_schema(filename):
    schema = get_filetext(filename)
    schema_json = json.loads(schema)
    functions = schema_json.get("functions")
    return functions

functions = get_functions_from_schema('schema.json')

class OpenAI:
    
    @classmethod
    def chat_completion_with_function(cls, prompt, messages, functions):
        print("prompt:"+prompt)
                
        # 文章生成にかかる時間を計測する
        start = time.time()
        # ChatCompletion APIを呼び出す
        response = openai.ChatCompletion.create(
                model=MODEL,
                messages=messages,
                functions=functions,
                function_call={"name": "generate_video"}
            )
        print("gpt generation time: "+str(time.time() - start))

        # ChatCompletion APIから返された結果を取得する
        message = response.choices[0].message
        print("chat completion message: " + json.dumps(message, indent=2))

        return response

class NajiminoAI:

    def __init__(self, user_message):
        self.user_message = user_message

    def generate_markdown(self, args, generation_time):

        template_string = get_filetext(filename = "template.md")
        
        template = Template(template_string)
        result = template.render(args=args, generation_time=generation_time)

        print(result)

        return result
    
    @classmethod
    def generate(cls, user_message):
        
        najiminoai = NajiminoAI(user_message)
        
        return najiminoai.create_video()

    def create_video(self):
        main_start_time = time.time()
        
        user_message = self.user_message + f" {NUMBER_OF_SCENES}シーン"
        
        messages = [
            {"role": "user", "content": user_message}
        ]
        
        functions = get_functions_from_schema('schema.json')
        
        response = OpenAI.chat_completion_with_function(prompt=user_message, messages=messages, functions=functions)
        
        message = response.choices[0].message
        total_tokens = response.usage.total_tokens
        
        video_path = None
        html = None
        if message.get("function_call") is None:
            
            print("message: " + json.dumps(message, indent=2))
            return [video_path, html]
            
        function_name = message["function_call"]["name"]
        
        try:
            args = json.loads(message["function_call"]["arguments"])
        except json.JSONDecodeError as e:
            print(f"JSON decode error at position {e.pos}: {e.msg}")
            print("message: " + json.dumps(message, indent=2))
            raise e
        
        print("args: " + json.dumps(args, indent=2))
        
        video_path = main(args)
            
        main_end_time = time.time()
        main_duration = main_end_time - main_start_time

        print("Thread Main start time:", main_start_time)
        print("Thread Main end time:", main_end_time)
        print("Thread Main duration:", main_duration)
        print("All threads finished.")

        function_response = self.generate_markdown(args, main_duration)
        
        html = (
            "<div style='max-width:100%; overflow:auto'>"
            + "<p>"
            + markdown2.markdown(function_response,extras=["tables"])
            + "</div>"
        )
        return [video_path, html]

if __name__ == "__main__":
    parser = argparse.ArgumentParser(description="Generate videos from text prompts")

    parser.add_argument("--prompts_file", type=str, help="File containing prompts (one per line)")

    args = parser.parse_args()

    if args.prompts_file:
        prompts = load_prompts(args.prompts_file)
        # main(prompts)
        NajiminoAI.generate("子どもたちが笑ったり怒ったり泣いたり楽しんだりする")

    else:

        description = """
入力されたテキストプロンプトに基づいてビデオを生成します
Generate a video based on the text prompt you enter.
"""

        iface = gr.Interface(
            fn=NajiminoAI.generate,
            # inputs=gr.Textbox(label=inputs_label),
            outputs=[
                gr.Video(),
                "html"
                ],
            # title=title,
            inputs=gr.inputs.Textbox(lines=2, placeholder="Enter your prompt"),
            title="najimino Video Generator (β)",
            description=description,
            examples=[
                ["侍たちは野を超え山を超え、敵軍大将を討ち取り、天下の大将軍となった!"],
                ["子どもたちが笑ったり怒ったり泣いたり楽しんだりする"],
                ["日は昇り、大地を照らし、日は沈む。闇夜を照らし、陽はまた昇る。 "],
            ],
        )
        iface.launch()