File size: 14,694 Bytes
93f3aed 027a5d8 93f3aed 027a5d8 93f3aed 027a5d8 93f3aed 027a5d8 93f3aed 027a5d8 93f3aed 027a5d8 93f3aed 027a5d8 93f3aed 027a5d8 93f3aed 027a5d8 93f3aed 027a5d8 93f3aed 027a5d8 93f3aed 027a5d8 93f3aed 027a5d8 93f3aed 027a5d8 93f3aed 027a5d8 93f3aed 027a5d8 93f3aed 027a5d8 93f3aed 027a5d8 93f3aed 027a5d8 93f3aed 027a5d8 93f3aed 027a5d8 93f3aed 027a5d8 93f3aed 027a5d8 93f3aed 027a5d8 93f3aed 027a5d8 93f3aed 027a5d8 93f3aed 027a5d8 93f3aed 027a5d8 93f3aed 027a5d8 93f3aed 027a5d8 93f3aed 027a5d8 93f3aed 027a5d8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 |
import gradio as gr
import requests
import folium
import json
import time
import os
from typing import Dict, List, Optional, Tuple
import pandas as pd
class AirQualityMapper:
"""Class to handle AirNow API interactions and map generation"""
def __init__(self):
self.base_url = "https://www.airnowapi.org"
self.aqi_colors = {
"Good": "#00E400",
"Moderate": "#FFFF00",
"Unhealthy for Sensitive Groups": "#FF7E00",
"Unhealthy": "#FF0000",
"Very Unhealthy": "#8F3F97",
"Hazardous": "#7E0023"
}
self.aqi_ranges = {
(0, 50): "Good",
(51, 100): "Moderate",
(101, 150): "Unhealthy for Sensitive Groups",
(151, 200): "Unhealthy",
(201, 300): "Very Unhealthy",
(301, 500): "Hazardous"
}
def get_aqi_category(self, aqi_value: int) -> str:
"""Get AQI category based on value"""
for (min_val, max_val), category in self.aqi_ranges.items():
if min_val <= aqi_value <= max_val:
return category
return "Unknown"
def get_aqi_color(self, category: str) -> str:
"""Get color for AQI category"""
return self.aqi_colors.get(category, "#808080")
def fetch_airnow_data(self, api_key: str) -> Tuple[List[Dict], str]:
"""
Fetch air quality data from AirNow API
Returns: (data_list, status_message)
"""
if not api_key or api_key.strip() == "":
return [], "β Please enter a valid AirNow API key"
try:
# Get data for major US cities and regions
# We'll use a comprehensive list of state capitals and major cities
locations = [
("90210", "California"), ("10001", "New York"), ("60601", "Illinois"),
("75201", "Texas"), ("33101", "Florida"), ("30301", "Georgia"),
("98101", "Washington"), ("97201", "Oregon"), ("80201", "Colorado"),
("85001", "Arizona"), ("89101", "Nevada"), ("84101", "Utah"),
("59601", "Montana"), ("58501", "North Dakota"), ("57501", "South Dakota"),
("68501", "Nebraska"), ("66601", "Kansas"), ("73101", "Oklahoma"),
("55101", "Minnesota"), ("50301", "Iowa"), ("65101", "Missouri"),
("72201", "Arkansas"), ("70801", "Louisiana"), ("39201", "Mississippi"),
("35201", "Alabama"), ("37201", "Tennessee"), ("40601", "Kentucky"),
("25301", "West Virginia"), ("23219", "Virginia"), ("27601", "North Carolina"),
("29201", "South Carolina"), ("32301", "Florida"), ("01501", "Massachusetts"),
("06101", "Connecticut"), ("02901", "Rhode Island"), ("03301", "New Hampshire"),
("05601", "Vermont"), ("04330", "Maine"), ("19901", "Delaware"),
("21201", "Maryland"), ("17101", "Pennsylvania"), ("07001", "New Jersey"),
("12201", "New York"), ("43215", "Ohio"), ("46201", "Indiana"),
("48601", "Michigan"), ("53201", "Wisconsin"), ("99501", "Alaska"),
("96801", "Hawaii")
]
all_data = []
for zipcode, state in locations:
try:
# Current observations endpoint
url = f"{self.base_url}/aq/observation/zipCode/current/"
params = {
"format": "application/json",
"zipCode": zipcode,
"distance": 50, # 50 mile radius
"API_KEY": api_key
}
response = requests.get(url, params=params, timeout=10)
if response.status_code == 200:
data = response.json()
if data: # If data is not empty
for observation in data:
observation['source_state'] = state
observation['source_zipcode'] = zipcode
all_data.extend(data)
# Add delay to respect rate limits
time.sleep(0.5)
except requests.exceptions.RequestException as e:
continue # Skip this location and continue with others
if not all_data:
return [], "β οΈ No air quality data found. Please check your API key or try again later."
# Remove duplicates based on reporting area
seen_areas = set()
unique_data = []
for item in all_data:
area_key = (item.get('ReportingArea', ''), item.get('StateCode', ''))
if area_key not in seen_areas:
seen_areas.add(area_key)
unique_data.append(item)
return unique_data, f"β
Successfully loaded {len(unique_data)} monitoring locations"
except Exception as e:
return [], f"β Error fetching data: {str(e)}"
def create_map(self, data: List[Dict]) -> str:
"""Create an interactive map with air quality data"""
if not data:
# Create a basic US map if no data
m = folium.Map(location=[39.8283, -98.5795], zoom_start=4)
folium.Marker(
[39.8283, -98.5795],
popup="No data available. Please check your API key.",
icon=folium.Icon(color='red', icon='info-sign')
).add_to(m)
return m._repr_html_()
# Calculate center point of all data
lats = [item['Latitude'] for item in data if 'Latitude' in item]
lons = [item['Longitude'] for item in data if 'Longitude' in item]
if lats and lons:
center_lat = sum(lats) / len(lats)
center_lon = sum(lons) / len(lons)
else:
center_lat, center_lon = 39.8283, -98.5795 # Center of US
# Create map
m = folium.Map(location=[center_lat, center_lon], zoom_start=4)
# Add markers for each monitoring location
for item in data:
try:
lat = item.get('Latitude')
lon = item.get('Longitude')
aqi = item.get('AQI', 0)
parameter = item.get('ParameterName', 'Unknown')
area = item.get('ReportingArea', 'Unknown Area')
state = item.get('StateCode', 'Unknown')
category = item.get('Category', {}).get('Name', self.get_aqi_category(aqi))
if lat is None or lon is None:
continue
# Get color based on AQI category
color = self.get_aqi_color(category)
# Create popup content
popup_content = f"""
<div style="width: 200px;">
<h4>{area}, {state}</h4>
<p><b>AQI:</b> {aqi} ({category})</p>
<p><b>Parameter:</b> {parameter}</p>
<p><b>Location:</b> {lat:.3f}, {lon:.3f}</p>
<p><b>Last Updated:</b> {item.get('DateObserved', 'Unknown')} {item.get('HourObserved', '')}:00</p>
</div>
"""
# Determine marker color based on AQI
if aqi <= 50:
marker_color = 'green'
elif aqi <= 100:
marker_color = 'yellow'
elif aqi <= 150:
marker_color = 'orange'
elif aqi <= 200:
marker_color = 'red'
elif aqi <= 300:
marker_color = 'purple'
else:
marker_color = 'darkred'
# Add marker
folium.Marker(
[lat, lon],
popup=folium.Popup(popup_content, max_width=250),
tooltip=f"{area}: AQI {aqi}",
icon=folium.Icon(color=marker_color, icon='cloud')
).add_to(m)
except Exception as e:
continue # Skip problematic markers
# Add legend
legend_html = """
<div style="position: fixed;
bottom: 50px; left: 50px; width: 150px; height: 180px;
background-color: white; border:2px solid grey; z-index:9999;
font-size:14px; padding: 10px">
<h4>AQI Legend</h4>
<p><i class="fa fa-circle" style="color:green"></i> Good (0-50)</p>
<p><i class="fa fa-circle" style="color:yellow"></i> Moderate (51-100)</p>
<p><i class="fa fa-circle" style="color:orange"></i> Unhealthy for Sensitive (101-150)</p>
<p><i class="fa fa-circle" style="color:red"></i> Unhealthy (151-200)</p>
<p><i class="fa fa-circle" style="color:purple"></i> Very Unhealthy (201-300)</p>
<p><i class="fa fa-circle" style="color:darkred"></i> Hazardous (301+)</p>
</div>
"""
m.get_root().html.add_child(folium.Element(legend_html))
return m._repr_html_()
def create_data_table(self, data: List[Dict]) -> pd.DataFrame:
"""Create a data table from the air quality data"""
if not data:
return pd.DataFrame()
# Extract relevant columns
table_data = []
for item in data:
table_data.append({
'Reporting Area': item.get('ReportingArea', 'Unknown'),
'State': item.get('StateCode', 'Unknown'),
'AQI': item.get('AQI', 0),
'Category': item.get('Category', {}).get('Name', self.get_aqi_category(item.get('AQI', 0))),
'Parameter': item.get('ParameterName', 'Unknown'),
'Date': item.get('DateObserved', 'Unknown'),
'Hour': item.get('HourObserved', 'Unknown'),
'Latitude': item.get('Latitude', 'Unknown'),
'Longitude': item.get('Longitude', 'Unknown')
})
df = pd.DataFrame(table_data)
return df.sort_values('AQI', ascending=False)
# Initialize the mapper
mapper = AirQualityMapper()
def update_map(api_key: str):
"""Update the map with fresh air quality data"""
if not api_key.strip():
return "Please enter your AirNow API key above.", pd.DataFrame()
# Fetch data
data, status = mapper.fetch_airnow_data(api_key)
# Create map
map_html = mapper.create_map(data)
# Create data table
df = mapper.create_data_table(data)
return map_html, df
# Create Gradio interface
with gr.Blocks(title="AirNow Air Quality Sensor Map", theme=gr.themes.Soft()) as demo:
gr.Markdown(
"""
# π¬οΈ AirNow Air Quality Sensor Map
This interactive map displays real-time air quality data from EPA's AirNow network of over 2,000 monitoring stations across the United States.
## How to use:
1. **Get an API Key**: Register for a free API key at [docs.airnowapi.org](https://docs.airnowapi.org/)
2. **Enter your API key** in the field below
3. **Click "Load Air Quality Data"** to fetch current readings
4. **Explore the map**: Click on markers to see detailed information about each monitoring station
## About the Data:
- Data is updated hourly from state, local, tribal, and federal air quality agencies
- Colors indicate Air Quality Index (AQI) levels from Good (green) to Hazardous (dark red)
- AQI values tell you how clean or polluted the air is and associated health effects
**β οΈ Note**: This data is preliminary and should not be used for regulatory decisions. For official data, visit [EPA's AirData](https://www.epa.gov/outdoor-air-quality-data).
"""
)
with gr.Row():
with gr.Column(scale=3):
api_key_input = gr.Textbox(
label="AirNow API Key",
placeholder="Enter your AirNow API key here...",
type="password",
info="Get your free API key at docs.airnowapi.org"
)
with gr.Column(scale=1):
load_button = gr.Button("Load Air Quality Data", variant="primary", size="lg")
status_text = gr.Markdown("Enter your API key and click 'Load Air Quality Data' to begin.")
with gr.Tabs():
with gr.TabItem("Interactive Map"):
map_output = gr.HTML(label="Air Quality Map", height=600)
with gr.TabItem("Data Table"):
data_table = gr.Dataframe(
label="Air Quality Monitoring Stations",
height=500,
interactive=False
)
gr.Markdown(
"""
## AQI Health Guidelines:
- **Good (0-50)**: Air quality is satisfactory for everyone
- **Moderate (51-100)**: Air quality is acceptable for most people
- **Unhealthy for Sensitive Groups (101-150)**: Members of sensitive groups may experience health effects
- **Unhealthy (151-200)**: Everyone may begin to experience health effects
- **Very Unhealthy (201-300)**: Health warnings of emergency conditions
- **Hazardous (301+)**: Health alert - everyone may experience serious health effects
## Data Sources:
- **AirNow API**: Real-time air quality data from EPA's monitoring network
- **Monitoring Agencies**: 120+ local, state, tribal, and federal government agencies
- **Update Frequency**: Hourly observations, daily forecasts
## Links:
- [AirNow.gov](https://www.airnow.gov) - Official air quality information
- [AirNow API Documentation](https://docs.airnowapi.org/) - API documentation and registration
- [EPA AirData](https://www.epa.gov/outdoor-air-quality-data) - Official regulatory air quality data
"""
)
# Set up event handler
load_button.click(
fn=update_map,
inputs=[api_key_input],
outputs=[map_output, data_table]
).then(
fn=lambda: "Map updated with latest air quality data! π",
outputs=[status_text]
)
# Launch the app
if __name__ == "__main__":
demo.launch(share=True) |